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Abstract. While useful probability bounds for n pairwise independent Bernoulli random vari-4
ables adding up to at least an integer k have been proposed in the literature, none of these bounds5
are tight in general. In this paper, we provide several results in this direction. Firstly, when k = 1,6
the tightest upper bound on the probability of the union of n pairwise independent events is provided7
in closed-form for any input marginal probability vector p ∈ [0, 1]n. To prove the result, we show the8
existence of a positively correlated Bernoulli random vector with transformed bivariate probabilities,9
which is of independent interest. Building on this, we show that the ratio of the Boole union bound10
and the tight pairwise independent bound is upper bounded by 4/3 and that the ratio is attained.11
Applications of the result in correlation gap analysis and distributionally robust bottleneck opti-12
mization are discussed. The result is extended to find the tightest lower bound on the probability13
of the intersection of n pairwise independent events. Secondly, for any k ≥ 2 and input marginal14
probability vector p ∈ [0, 1]n, new upper bounds are derived by exploiting ordering of probabilities.15
Numerical examples are provided to illustrate when the bounds provide improvement over existing16
bounds. Lastly, we identify specific instances when the existing and the new bounds are tight, for17
example with identical marginal probabilities.18
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1. Introduction. Probability bounds for sums of Bernoulli random variables21

have been extensively studied by researchers in various communities including proba-22

bility and statistics, computer science, combinatorics and optimization. In this paper,23

our focus is on pairwise independent Bernoulli random variables. It is well known that24

while mutually independent random variables are pairwise independent, the reverse25

is not true. Feller [18] attributes Bernstein [4] with identifying one of the earliest26

examples of n = 3 pairwise independent random variables that are not mutually in-27

dependent. For general n, constructions of pairwise independent Bernoulli random28

variables can be found in the works of Geisser and Mantel [24], Karloff and Man-29

sour [30], Koller and Meggido [31], pairwise independent discrete random variables in30

Feller [17], Lancaster [36], Joffe [29], O’Brien [41] and pairwise independent normal31

random variables in Geisser and Mantel [24]. One of the motivations for studying32

constructions of pairwise independent random variables particularly in the computer33

science community is that the joint distribution can have a low cardinality support34

(polynomial in the number of random variables) in comparison to mutually indepen-35

dent random variables (exponential in the number of random variables). The reader36

is referred to Lancaster [36] and more recent papers of Babai [2] and Gavinsky and37

Pudlák [23] who provide precise lower bounds on the entropy of the joint distribu-38

tion of pairwise independent random variables that only grow logarithmically with the39

number of random variables. The low cardinality of such distributions have important40

ramifications in the efficient derandomization of algorithms for NP-hard combinato-41
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2 A. K. RAMACHANDRA, AND K. NATARAJAN

rial optimization problems (see the review article of Luby and Widgerson [37] and42

the references therein for results on pairwise independent and more generally t-wise43

independent random variables).44

In this paper, we are interested in the problem of computing probability bounds45

for the sum of pairwise independent Bernoulli random variables adding up to at46

least an integer k. Given an integer n ≥ 2, denote by [n] = {1, 2, . . . , n} and by47

Kn = {(i, j) : 1 ≤ i < j ≤ n} (it can be viewed as a complete graph on n nodes).48

Given integers i < j, let [i, j] = {i, i + 1, . . . , j − 1, j}. Consider a Bernoulli random49

vector c̃ = (c̃1, . . . , c̃n) with marginal probabilities given by pi = P(c̃i = 1) for i ∈ [n].50

Denote by p = (p1, . . . , pn) ∈ [0, 1]n, the univariate marginal vector and by Θ({0, 1}n),51

the set of all probability distributions supported on {0, 1}n. Consider the set of52

joint probability distributions of Bernoulli random variables consistent with the given53

marginal probabilities and pairwise independence:54

Θ(p, pipj ; (i, j) ∈ Kn) =
{
θ ∈ Θ({0, 1}n)

∣∣∣ Pθ (c̃i = 1) = pi,∀i ∈ [n],

Pθ (c̃i = 1, c̃j = 1) = pipj , ∀(i, j) ∈ Kn

}
.

55

This set of distributions is nonempty for any p ∈ [0, 1]n, since the distribution of56

mutually independent random variables lies in the set. Our problem of interest is to57

compute the maximum probability that n random variables adds up to at least an58

integer k ∈ [n] over all distributions in the set. Denote this tightest upper bound59

by P (n, k,p) (observe that the bivariate probabilities here are simply given by the60

product of the univariate probabilities). Then,61

(1.1) P (n, k,p) = max
θ∈Θ(p,pipj ;(i,j)∈Kn)

Pθ

∑
i∈[n]

c̃i ≥ k

 .62

Two useful bounds that have been proposed for this problem are discussed next:63

(a) Chebyshev [10] bound: The one-sided version of the Chebyshev tail probability
bound uses the first and second moments of the random variables. Since the
Bernoulli random variables are assumed to be pairwise independent or equiva-
lently uncorrelated, the variance of the sum is given by:

Variance

∑
i∈[n]

c̃i

 =
∑
i∈[n]

pi(1− pi).

Applying the Chebyshev bound gives:64

(1.2) P (n, k,p) ≤


1, k <

∑
i∈[n]

pi,∑
i∈[n] pi(1− pi)∑

i∈[n] pi(1− pi) + (k −
∑
i∈[n] pi)

2
,
∑
i∈[n]

pi ≤ k ≤ n.
65

(b) Schmidt, Siegel and Srinivasan [54] bound: The Schmidt, Siegel and Srinivasan
bound is derived by bounding the tail probability using the moments of mul-
tilinear polynomials. This is in contrast to the Chernoff-Hoeffding bound (see
Chernoff [11], Hoeffding [27]) which bounds the tail probability of the sum of
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TIGHT PROBABILITY BOUNDS WITH PAIRWISE INDEPENDENCE 3

independent random variables using the moment generating function. A multi-
linear polynomial of degree j in n variables is defined as:

Sj(c) =
∑

1≤i1<i2<...<ij≤n

ci1ci2 . . . cij .

At the crux of the analysis in [54] is the observation that all the higher mo-66

ments of the sum of Bernoulli random variables can be generated using linear67

combinations of the expected values of multilinear polynomials of the random68

variables. The construction of the bound makes use of the equality:69

(1.3)

(∑
i∈[n] ci

j

)
= Sj(c), ∀c ∈ {0, 1}n,∀j ∈ [0,

∑
i∈[n] ci],70

where S0(c) = 1 and
(
r
s

)
= r!/(s!(r−s)!) for any pair of integers r ≥ s ≥ 0. The71

bound derived in Schmidt et al. [54] (see Theorem 7, part (II) on page 239) for72

pairwise independent random variables is1:73

(1.4) P (n, k,p) ≤ min

(
1,

∑
i∈[n] pi

k
,

∑
(i,j)∈Kn pipj(

k
2

) )
.74

While both the Chebyshev bound in (1.2) and the Schmidt, Siegel and Srinivasan75

bound in (1.4) are useful, neither of them are tight for general values of n, k and76

p ∈ [0, 1]n. In this paper, we work towards tightening these bounds for pairwise77

independent random variables and identifying instances when the bounds are tight.78

1.1. Other related bounds. Consider the set of joint distributions of Bernoulli79

random variables consistent with the marginal probability vector p ∈ [0, 1]n and80

general bivariate probabilities given by pij = P(c̃i = 1, c̃j = 1) for all (i, j) ∈ Kn:81

Θ(p, pij ; (i, j) ∈ Kn) =
{
θ ∈ Θ({0, 1}n)

∣∣∣ Pθ (c̃i = 1) = pi,∀i ∈ [n],

Pθ (c̃i = 1, c̃j = 1) = pij , ∀(i, j) ∈ Kn

}
.

82

Unlike the pairwise independent case, verifying if this set of distributions is nonempty83

is already known to be a NP-complete problem (see Pitowsky [45]). The tightest84

upper bound on the tail probability over all distributions in this set is given by:85

max
θ∈Θ(p,pij ;(i,j)∈Kn)

Pθ

∑
i∈[n]

c̃i ≥ k

 ,86

1While the statement in the theorem in [54] is provided for k >
∑

i pi, it is straightforward to
see that their analysis would lead to the form provided here for general k.
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4 A. K. RAMACHANDRA, AND K. NATARAJAN

where the bound is set to −∞ if the set of feasible distributions is empty. The bound87

is given by the optimal value of the linear program (see Hailperin [26]):88

(1.5)

max
∑

c∈{0,1}n:
∑
t ct≥k

θ(c)

s.t
∑

c∈{0,1}n
θ(c) = 1,∑

c∈{0,1}n:ci=1

θ(c) = pi, ∀i ∈ [n],∑
c∈{0,1}n:ci=1,cj=1

θ(c) = pij , ∀(i, j) ∈ Kn,

θ(c) ≥ 0, ∀c ∈ {0, 1}n,

89

where the decision variables are the joint probabilities θ(c) = P(c̃ = c) for all c ∈90

{0, 1}n. The number of decision variables in the formulation grows exponentially in91

the number of random variables n. The dual linear program is given by:92

(1.6)

min
∑

(i,j)∈Kn

λijpij +
∑
i∈[n]

λipi + λ0

s.t
∑

(i,j)∈Kn

λijcicj +
∑
i∈[n]

λici + λ0 ≥ 0, ∀c ∈ {0, 1}n,∑
(i,j)∈Kn

λijcicj +
∑
i∈[n]

λici + λ0 ≥ 1, ∀c ∈ {0, 1}n :
∑
t ct ≥ k.

93

The dual linear program in (1.6) has a polynomial number of decision variables but94

an exponential number of constraints. This linear program is always feasible (simply95

set λ0 = 1 and remaining dual variables to be zero) and strong duality thus holds.96

Given the large size of the primal and dual linear programs that need to be solved,97

two main approaches have been studied in the literature:98

(a) The first approach is to find closed-form bounds by generating simple dual99

feasible solutions (see Kounias [32], Kounias and Marin [33], Sathe et al. [53],100

Móri and Székely [40], Dawson and Sankoff [12], Galambos [20, 21], de Caen [13],101

Kuai et al. [34], Dohmen and Tittmann [14] and related graph-based bounds102

in Hunter [28], Worsley [59], Veneziani [56], Vizvári [58]). These bounds have103

shown to be tight in specific instances (in Section 2.1 we discuss some of these104

instances).105

(b) The second approach is to reduce the size of the linear programs used and106

solve them numerically. As the number of random variables n increase, the107

linear programs quickly become intractable and thus many papers adopting108

this approach, aggregate the primal decision variables, thus obtaining weaker109

bounds as a trade-off for the reduced size. Formulations of linear programs using110

partially or fully aggregated univariate, bivariate or m-variate information for111

2 ≤ m < n have been proposed in Kwerel [35], Platz [46], Prékopa [47, 48],112

Boros and Prékopa [6], Prékopa and Gao [49], Qiu et al. [51], Yang et al. [61],113

Yoda and Prékopa [62]). Techniques to solve the dual formulation have been114

studied in Boros et al. [7].115

Using the second approach, in some cases, closed-form bounds have been derived116

as solutions of the aggregated linear programs. One such bound which is of relevance117

to this paper is developed in Boros and Prékopa [6] when the first and second binomial118
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TIGHT PROBABILITY BOUNDS WITH PAIRWISE INDEPENDENCE 5

moments of an integer random variable supported on [0, n] are known. They computed119

the tightest upper bound on P(ξ̃ ≥ k) by considering all distributions ω of an integer120

random variable ξ̃ supported on [0, n] given by the set:121 {
ω([0, n])

∣∣∣ Eω [( ξ̃

j

)]
= Sj , j = 1, 2

}
.122

Setting ξ̃ =
∑
i c̃i with S1 = E[S1(c̃)] and S2 = E[S2(c̃)] gives a closed-form upper123

bound as follows:124

(1.7)

P

∑
i∈[n]

c̃i ≥ k

 ≤


1, k <
(n− 1)S1 − 2S2

n− S1
,

(k + n− 1)S1 − 2S2

kn
,

(n− 1)S1 − 2S2

n− S1
≤ k < 1 +

2S2

S1
,

(i− 1)(i− 2S1) + 2S2

(k − i)2 + (k − i)
, k ≥ 1 +

2S2

S1
,

125

where i = d((k − 1)S1 − 2S2)/(k − S1)e and the ceiling function dxe maps x to the126

smallest integer greater than or equal to x. Similar to the Chebyshev bound and127

the Schmidt, Siegel and Srinivasan bound, the Boros and Prékopa bound in (1.7)128

is not generally tight since it uses aggregated moment information, rather than the129

specific marginal probabilities. Another useful upper bound derived under weaker130

assumptions is the Boole union bound [5] (see also Fréchet [19]) for k = 1. This bound131

is valid even with arbitrary dependence among the Bernoulli random variables. Let132

Θ(p) denotes the set of joint distributions supported on {0, 1}n consistent with the133

univariate marginal probability vector p ∈ [0, 1]n. The Boole union bound is given134

as:135

(1.8) Pu(n, 1,p) = max
θ∈Θ(p)

Pθ

∑
i∈[n]

c̃i ≥ 1

 = min

∑
i∈[n]

pi, 1

 .136

Clearly, P (n, 1,p) ≤ Pu(n, 1,p). Extensions of this bound for k ≥ 2 is provided in137

Rüger [52].138

1.2. Contributions and structure. This brings us to the key contributions139

and the structure of the current paper:140

(a) In Section 2, we establish (see Lemma 2.1) that a positively correlated Bernoulli141

random vector c̃ with the univariate probability vector p ∈ [0, 1]n and trans-142

formed bivariate probabilities pipj/p where maxi pi ≤ p ≤ 1, always exists. The143

lemma helps us compute the tightest upper bound on the probability of the union144

of n pairwise independent events and is of independent interest. By a simple145

transformation, the results from Lemma 2.1 are extended to show the existence146

of an alternate positively correlated Bernoulli random vector (see Corollary 2.2).147

Feasibility is not guaranteed for arbitrary correlation structures with Bernoulli148

random vectors and hence these two results provide useful sufficient conditions.149

(b) We then provide the tightest upper bound on the probability on the union of150

n pairwise independent events (k = 1) in closed-form (see Theorem 2.3). The151

contributions of Theorem 2.3 lie in:152

1. Establishing that when the random variables are pairwise independent, for153

any given marginal vector p ∈ [0, 1]n, the upper bound proposed in Kounias154
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6 A. K. RAMACHANDRA, AND K. NATARAJAN

[32], Hunter [28] and Worsley [59] is tight. These bounds were initially de-155

veloped for the sum of dependent Bernoulli random variables with arbitrary156

bivariate probabilities (using tree structures from graph theory) and are not157

tight in general (see Example 2.4 in Section 2.1). Interestingly for pairwise158

independent random variables, we prove that the bound is tight by using159

Lemma 2.1.160

2. Providing an explicit construction of an extremal distribution (not unique)161

that attains this bound (see Table 2).162

3. Proving that the ratio of the Boole union bound and the pairwise independent163

bound is upper bounded by 4/3 and that this is attained (see Proposition 2.5).164

Applications of the result in correlation gap analysis and distributionally165

robust bottleneck combinatorial optimization are discussed (see examples 2.6166

and 2.7).167

4. Deriving the tightest lower bound on the probability of the intersection of n168

pairwise independent events (k = n) in closed-form (see Corollary 2.9).169

(c) In Section 3, we focus on k ≥ 2 and present new bounds exploiting the ordering170

of probabilities (see Theorem 3.1). These ordered bounds improve on the closed-171

form bounds discussed in Section 1 and numerical examples are provided to172

illustrate this result.173

(d) In Section 4, we provide instances where some of the existing bounds and the174

newly proposed ordered bounds are tight:175

1. First, we identify a special case when the existing closed-form bounds are176

tight. When the random variables are identically distributed, in Section 4.1,177

we provide the tightest upper bound in closed-form (see Theorem 4.1) for178

any k ∈ [n]. The proof is based on showing an equivalence with a linear pro-179

gramming formulation of an aggregated moment bound for which closed-form180

solutions have been derived by Boros and Prékopa [6]. While the expression181

of the tight closed-form bound is complicated in form in comparison with the182

Chebyshev bound in (1.2) and the Schmidt, Siegel and Srinivasan bound in183

(1.4), it helps us identify conditions when the latter bounds are guaranteed184

to be tight (see Proposition 4.3).185

2. This result with identical marginals is further extended to show tightness186

for more general t-wise independent variables (see Corollary 4.2). The tight187

bounds for t ≥ 4 can be derived as the optimal solution to an aggregated188

linear program first proposed by Prékopa [48].189

3. Next, when n−1 marginal probabilities are identical, Proposition 4.5 provides190

instances when the new ordered bounds are tight. Numerical examples are191

provided to illustrate this result.192

(e) We conclude in Section 5 and identify some future research questions.193

2. Tight upper bound for k = 1. The goal of this section is to provide the194

tightest upper bound on the probability of the union of pairwise independent events.195

Towards this, we start by generating a feasible solution to the dual linear program in196

(1.6) with k = 1, pij = pipj for all (i, j) ∈ Kn and probabilities sorted in increasing197

value as 0 ≤ p1 ≤ p2 ≤ . . . ≤ pn ≤ 1. Consider the dual solution:198

λ0 = 0, λi = 1 ∀i ∈ [n], λin = −1 ∀i ∈ [n− 1] and λij = 0 otherwise.199
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TIGHT PROBABILITY BOUNDS WITH PAIRWISE INDEPENDENCE 7

The left hand side of the dual constraints in (1.6) then simplifies to:200 ∑
(i,j)∈Kn

λijcicj +
∑
i∈[n]

λici + λ0 = −
∑

i∈[n−1]

cicn +
∑
i∈[n]

ci

= cn +
∑

i∈[n−1]

ci(1− cn).
201

To verify that this solution is dual feasible, observe that with all ci = 0, cn +∑
i∈[n−1] ci(1 − cn) = 0. When cn = 1, regardless of the values of c1, . . . , cn−1,

we have cn +
∑
i∈[n−1] ci(1− cn) = 1. Lastly, when cn = 0 and at least one ci = 1 for

i ∈ [n− 1], we have cn +
∑
i∈[n−1] ci(1− cn) ≥ 1. This solution has an objective value

of
∑
i∈[n] pi − pn(

∑
i∈[n−1] pi). From weak duality and using the trivial upper bound

of 1, we have:

P (n, 1,p) ≤ min

∑
i∈[n]

pi − pn

 ∑
i∈[n−1]

pi

 , 1

 .

Intuitively the first term in this expression is obtained using the probabilistic inequal-202

ity:203

P

∑
i∈[n]

c̃i ≥ 1

 ≤ ∑
j∈[n−1]

P (c̃j = 1, c̃n = 0) + P (c̃n = 1) ,204

and is provided in the work of Kounias [32]. The key result we show is that it is205

always possible to construct a pairwise independent distribution which attains the206

upper bound. The proof involves showing that the problem can be transformed to207

proving the existence of a distribution of a Bernoulli random vector c̃ with univariate208

probabilities given by P(c̃i = 1) = pi and transformed bivariate probabilities given209

by P(c̃i = 1, c̃j = 1) = pipj/pn, where pn is the largest univariate probability. In the210

following lemma, we prove a more general result on the existence of such a correlated211

Bernoulli random vector.212

Lemma 2.1. Given an arbitrary univariate probability vector p ∈ [0, 1]n and bi-213

variate probabilities pipj/p for (i, j) ∈ Kn where maxi pi ≤ p ≤ 1, a Bernoulli random214

vector consistent with the given univariate and bivariate probabilities always exists.215

Proof. Sort the probabilities in increasing value as 0 ≤ p1 ≤ p2 ≤ . . . ≤ pn ≤ 1.216

We want to show that there always exists a distribution θ ∈ Θ(p, pipj/p; (i, j) ∈ Kn)217

such that:218

(2.1)

∑
c∈{0,1}n

θ(c) = 1,∑
c∈{0,1}n:ci=1

θ(c) = pi, ∀i ∈ [n],∑
c∈{0,1}n:ci=1,cj=1

θ(c) =
pipj
p
, ∀(i, j) ∈ Kn,

219

where pn ≤ p ≤ 1. The proof is divided into two parts:220

(1) We first argue that it is sufficient to verify the existence of joint probabilities221
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8 A. K. RAMACHANDRA, AND K. NATARAJAN

θ(c) for n Bernoulli random variables such that:222

(2.2)

∑
c∈{0,1}n

θ(c) = 1,∑
c∈{0,1}n:ci=1

θ(c) = pi, ∀i ∈ [n],∑
c∈{0,1}n:ci=1,cj=1

θ(c) =
pipj
pn

, ∀(i, j) ∈ Kn,

223

where the bivariate probabilities are modified from pipj/p to pipj/pn. This is because
with 1 ≤ 1/p ≤ 1/pn, we can find a λ ∈ [0, 1] such that:

1

p
= λ

1

pn
+ (1− λ)1.

Then, we can create the convex combination of two distributions θ and θ as follows:

θ = λθ + (1− λ)θ,

where θ is a probability distribution which satisfies (2.2) and θ is a pairwise indepen-224

dent joint distribution on n Bernoulli random variables with univariate probabilities225

given by pi and bivariate probabilities given by pipj . The distribution θ always exists226

as we can simply choose the mutually independent distribution on n random vari-227

ables with univariate probabilities pi. The convex combination then guarantees the228

existence of a distribution θ which satisfies (2.1). In step (2), we prove the existence229

of such a θ.230

(2) To show that (2.2) is feasible, observe that there always exists a feasible dis-231

tribution on n − 1 Bernoulli random variables with probabilities given by ϑ(c−n) =232

P(c̃−n = c−n) for all c−n = (c1, . . . , cn−1) ∈ {0, 1}n−1 such that:233

(2.3)

∑
c−n∈{0,1}n−1

ϑ(c−n) = 1,∑
c−n∈{0,1}n−1:ci=1

ϑ(c−n) =
pi
pn
, ∀i ∈ [n− 1],∑

c−n∈{0,1}n−1:ci=1,cj=1

ϑ(c−n) =
pipj
p2
n

, ∀(i, j) ∈ Kn−1.

234

Such a ϑ exists because we can simply choose the mutually independent distribution235

on n − 1 random variables with univariate probabilities pi/pn where the bivariate236

probabilities are given by (pi/pn)(pj/pn). Then, we construct the distribution on n237

random variables by setting the probability of the vector of all zeros to 1−pn, setting238

the probabilities of the scenarios P(c̃−n = c−n, c̃n = 1) to ϑ(c−n)pn and setting all239

the remaining probabilities to zero. This creates a feasible distribution satisfying (2.2)240

as seen in the construction of Table 1. This completes the proof.241

We remark that there are alternative approaches to construct distributions satisfying242

Lemma 2.1. An anonymous referee provided the following construction. Let d̃ denote243

a Bernoulli random vector with mutually independent random variables with marginal244

probabilities given by P(d̃i = 1) = pi/p for i ∈ [n] and a Bernoulli random variable245

z̃ constructed independently with P(z̃ = 1) = p. Define c̃i = d̃iz̃ for i ∈ [n]. Then246

P(c̃i = 1) = pi for i ∈ [n] and P(c̃i = 1, c̃j = 1) = pipj/p for (i, j) ∈ Kn. We next show247

that Lemma 2.1 can be extended to prove the existence of an alternative positively248

correlated Bernoulli random vector.249
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TIGHT PROBABILITY BOUNDS WITH PAIRWISE INDEPENDENCE 9

Table 1: Probabilities of the scenarios to create a feasible distribution θ in (2.2).

Scenarios c1 c2 . . . cn Probability

2n−1


0 0 . . . 0 θ(c) = 1− pn
1 0 . . . 0 0
...

...
...

...
...

1 1 . . . 0 0

2n−1


0 0 . . . 1 θ(c) = pnϑ(c−n)
...

...
...

...
...

1 1 . . . 1 θ(c) = pnϑ(c−n)

Corollary 2.2. Given an arbitrary univariate probability vector p ∈ [0, 1]n and250

bivariate probabilities pipj + p
1−p (1 − pi)(1 − pj) for (i, j) ∈ Kn where 0 ≤ p ≤251

mini pi, a Bernoulli random vector consistent with the given univariate and bivariate252

probabilities always exists.253

Proof. From Lemma 2.1, it is straightforward to see that there exists a feasible254

bivariate distribution ϑ with univariate probabilities 1−pi and bivariate probabilities255

(1− pi)(1− pj)/(1− p) where 0 ≤ p ≤ mini pi (since 1 ≥ 1− p ≥ maxi(1− pi)). Note256

that this distribution satisfies Pϑ (c̃i = 0) = pi, ∀i ∈ [n] and257

Pϑ (c̃i = 0, c̃j = 0) = Pϑ (c̃i = 0)− [Pϑ (c̃j = 1)− Pϑ (c̃i = 1, c̃j = 1)]
= pi − [(1− pj) + (1− pi)(1− pj)/(1− p)]
= pipj + p

1−p (1− pi)(1− pj),
258

for all (i, j) ∈ Kn. By flipping the zeros and ones of the support of ϑ while retaining259

the same joint probabilities ϑ(c), we obtain the desired result.260

We note that Lemma 2.1 and Corollary 2.2 provide conditions on the bivariate261

probabilities which guarantee the feasibility of positively correlated Bernoulli random262

vectors. Feasibility is typically not guaranteed for arbitrary correlation structures263

with Bernoulli random vectors. While prior works have identified specific correlation264

structures that are compatible with Bernoulli random vectors (see Chaganty and Joe265

[9], Qaqish [50], Emrich and Piedmonte [16], Lunn and Davies [38]), the identified266

conditions in Lemma 2.1 and Corollary 2.2 appear to be new to the best of our267

knowledge. This brings us to the first theorem, which provides the tightest upper268

bound on the probability of the union of n pairwise independent events using Lemma269

2.1.270

Theorem 2.3. Sort the probabilities in increasing value as 0 ≤ p1 ≤ p2 ≤ . . . ≤271

pn ≤ 1. Then,272

(2.4) P (n, 1,p) = min

∑
i∈[n]

pi − pn

 ∑
i∈[n−1]

pi

 , 1

 .273

Proof. With pij = pipj and k = 1, the optimal value of the primal linear program274

in (1.5) is bounded since it is feasible and the objective function describes a probability275

value. The optimality conditions of linear programming states that {θ(c); c ∈ {0, 1}n}276

is primal optimal and {λij ; (i, j) ∈ Kn, λi; i ∈ [n], λ0} is dual optimal if and only if277

they satisfy: (i) the primal feasibility conditions in (1.5), (ii) the dual feasibility278
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conditions in (1.6) and (iii) the complementary slackness conditions given by:279  ∑
(i,j)∈Kn

λijcicj +
∑
i∈[n]

λici + λ0

 θ(c) = 0, ∀c ∈ {0, 1}n :
∑
t ct = 0, ∑

(i,j)∈Kn

λijcicj +
∑
i∈[n]

λici + λ0 − 1

 θ(c) = 0, ∀c ∈ {0, 1}n :
∑
t ct ≥ 1.

280

(1) Proof of tightness of non-trivial bound in (2.4): We show that P (n, 1,p) =281 ∑
i∈[n] pi − pn(

∑
i∈[n−1] pi) which is the non-trivial part of the upper bound in (2.4)282

when
∑
i∈[n−1] pi ≤ 1. Consider the dual feasible solution λ0 = 0, λi = 1 ∀i ∈ [n],283

λin = −1 ∀i ∈ [n−1] and λij = 0 otherwise. We verify the tightness of the bound, by284

showing there exists a primal solution (feasible distribution) which satisfies the com-285

plementary slackness conditions. Towards this, observe that from the complementary286

slackness conditions in (iii) for all values of c ∈ {0, 1}n with
∑
t∈[n−1] ct ≥ 2 and287

cn = 0, we have:288

cn +
∑

i∈[n−1]

ci(1− cn)− 1 > 0 =⇒ θ(c) = 0.
289

This forces a total of 2n−1−n scenarios to have zero probability. Building on this, we290

set the probabilities of the 2n possible scenarios of c̃ as shown in Table 2. The proba-291

bility of the vector of all zeros (one scenario) is set to 1−
∑
i∈[n] pi + pn(

∑
i∈[n−1] pi).292

To match the bivariate probabilities P(c̃i = 1, c̃n = 0) = pi(1 − pn), we have to then293

set the probability of the scenario where ci = 1, cn = 0 and all remaining cj = 0 to294

pi(1 − pn). This corresponds to the n − 1 scenarios in Table 2. Hence, to ensure

Table 2: Probabilities of 2n scenarios.

Scenarios c1 c2 . . . cn−1 cn Probability

1 0 0 . . . 0 0 1−
∑

i∈[n] pi + pn
(∑

i∈[n−1] pi

)
n− 1


1 0 . . . 0 0 p1(1− pn)
0 1 . . . 0 0 p2(1− pn)
...

...
...

...
...

...
0 0 . . . 1 0 pn−1(1− pn)

2n−1 − n


1 1 . . . 0 0 0
...

...
...

...
...

...
1 1 . . . 1 0 0

2n−1


0 0 . . . 0 1 θ(c)

 pn...
...

...
...

...
...

1 1 . . . 1 1 θ(c)

295
feasibility of the distribution, we need to show that there exist nonnegative values of296
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θ(c) for the last 2n−1 scenarios such that:297 ∑
c∈{0,1}n:cn=1

θ(c) = pn,∑
c∈{0,1}n:ci=1,cn=1

θ(c) = pipn, ∀i ∈ [n− 1],∑
c∈{0,1}n:ci=1,cj=1,cn=1

θ(c) = pipj , ∀(i, j) ∈ Kn−1,

298

or equivalently, by conditioning on cn = 1, we need to show that there exists nonneg-299

ative values of ϑ(c−n) = P(c̃−n = c−n) for all c−n = (c1, . . . , cn−1) ∈ {0, 1}n−1 such300

that:301

(2.5)

∑
c−n∈{0,1}n−1

ϑ(c−n) = 1,∑
c−n∈{0,1}n−1:ci=1

ϑ(c−n) = pi, ∀i ∈ [n− 1],∑
c−n∈{0,1}n−1:ci=1,cj=1

ϑ(c−n) =
pipj
pn

, ∀(i, j) ∈ Kn−1.

302

This corresponds to verifying the existence of a probability distribution on n − 1303

Bernoulli random variables with univariate probabilities pi and bivariate probabilities304

pipj/pn where p1 ≤ p2 ≤ . . . ≤ pn−1 ≤ pn. Observe that in (2.5), the univariate305

probabilities remain the same but the random variables are no longer pairwise in-306

dependent. Now we make use of Lemma 2.1 to claim that (2.5) is always feasible.307

By considering n − 1 variables and setting p = pn ≥ maxi∈[n−1] pi, it is to easy to308

see from Lemma 2.1 that there exists a distribution which satisfies (2.5). An outline309

of the different distributions used in the construction is provided in Figure 1. This310

completes the proof for the case where
∑
i∈[n−1] pi ≤ 1 with:311

P (n, 1,p) =
∑
i∈[n]

pi − pn

 ∑
i∈[n−1]

pi

 .312

(2) Proof of tightness of the trivial part of the bound in (2.4): To complete the proof,313

consider the case with
∑
i∈[n−1] pi > 1. Then, there exists an index t ∈ [2, n− 1] such314

that
∑
i∈[t−1] pi ≤ 1 and

∑
i∈[t] pi > 1. Let δ = 1 −

∑
i∈[t−1] pi. Clearly 0 ≤ δ < pt.315

From step (1), we know that there exists a distribution for t + 1 pairwise indepen-316

dent random variables with marginal probabilities p1, p2, . . . , pt−1, δ, pt+1 such that317

the probability of the sum of the random variables being at least one is equal to318

one (since the sum of the first t probabilities in this case is equal to one). By in-319

creasing the marginal probability δ to pt, we can only increase this probability. To320

see this, consider the distribution for t + 1 mutually independent Bernoulli random321

variables with marginal probabilities p1, p2, . . . , pt−1, 1, pt+1 where the probability of322

the sum of the random variables being at least one is equal to one. We can then323

find a λ ∈ [0, 1) such that pt = λδ + (1 − λ) and construct a pairwise independent324

distribution for t+ 1 pairwise independent random variables with marginal probabili-325

ties p1, p2, . . . , pt−1, pt, pt+1 by using the convex combination of the two distributions326

with sum of the random variables taking a value at least one with probability one.327

We can generate the remaining random variables c̃t+2, . . . , c̃n independently with mar-328
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(pi, pipj)

n dimensions

(
pi,

pipj
pn

)
n-1 dimensions

(pi, pipj)

n-1 dimensions

(
pi,

pipj
pn−1

)
n-1 dimensions

(
pi

pn−1
,
pipj
p2n−1

)
n-2 dimensions

Fig. 1: Construction of the extremal distribution.

ginal probabilities pt+2, . . . , pn. This provides a feasible distribution that attains the329

bound of one, thus completing the proof.330

2.1. Connection of Theorem 2.3 to existing results. Bounds on the prob-331

ability that the sum of Bernoulli random variables is at least one has been extensively332

studied in the literature, under knowledge of general bivariate probabilities. Let Ai333

denote the event that ci = 1 for each i, then, k = 1 simply corresponds to bounding334

the probability of the union of events. When the marginal probabilities pi = P(Ai) for335

i ∈ [n] and bivariate probabilities pij = P(Ai ∩ Aj) for (i, j) ∈ Kn are given, Hunter336

[28] and Worsley [59] derived the following bound by optimizing over spanning trees337

τ ∈ T :338

P(∪iAi) ≤
∑
i∈[n]

pi −max
τ∈T

∑
(i,j)∈τ

pij ,(2.6)339

340

where T is the set of all spanning trees on the complete graph with n nodes with edge341

weights given by pij . A special case of the Hunter [28] bound was derived by Kounias342

[32]:343

P(∪iAi) ≤
∑
i∈[n]

pi −max
j∈[n]

∑
i 6=j

pij ,(2.7)344

345

which subtracts the maximum weight of a star spanning tree from the sum of the346

marginal probabilities. Tree bounds have been shown to be tight, in some special347

cases as outlined next:348
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(a) Zero bivariate probabilities for all pairs: When all the probabilities pij are zero,349

the bound reduces to the Boole union bound which is tight.350

(b) Zero bivariate probabilities outside a given tree: Given a tree τ such that the351

bivariate probabilities pij are zero for edges (i, j) /∈ τ , Worsley [59] proved that352

the bound is tight (see Veneziani [57] for related results).353

(c) Lower bounds on bivariate probabilities: Boros et al. [7] proved that by relaxing
the equality of bivariate probabilities to lower bounds on bivariate probabilities:

P
(
Ai ∩Aj

)
≥ pij , ∀(i, j) ∈ Kn,

the tightest upper bound on the probability of the union is exactly the Hunter354

[28] and Worsley [59] bound (see Maurer [39] for related results).355

(d) Pairwise independent variables (Theorem 2.3 in this paper): With pairwise356

independent random variables where pij = pipj , the maximum weight spanning357

trees in (2.6) is exactly the star tree with the root at node n and edges (i, n)358

for all i ∈ [n− 1]. In, this case, the Kounias [32], Hunter [28] and Worsley [59]359

bound reduce to the bound in (2.4) which is shown to be tight in Theorem 2.3360

of this paper.361

The next example illustrates that with general bivariate probabilities, even if a362

joint distribution exists, the Hunter [28], Worsley [59] bound and Kounias [32] bound363

are not guaranteed to be tight.364

Example 2.4. Consider n = 4 Bernoulli random variables with univariate mar-
ginal probabilities:

p1 = 0.35, p2 = 0.19, p3 = 0.13, p4 = 0.2,

and bivariate probabilities:

p12 = 0.001, p13 = 0.022, p14 = 0.03, p23 = 0.017, p24 = 0.018, p34 = 0.019.

It can be verified using linear programming that a joint distribution with these given
univariate and bivariate probabilities exists. The tight upper bound obtained by
solving the linear program (1.5) is equal to:

max
θ∈Θ(p,pij ;(i,j)∈K4)

Pθ (c̃1 + c̃2 + c̃3 + c̃4 ≥ 1) = 0.784.

Figure 2 displays the star spanning tree chosen by the Kounias [32] bound and the365

spanning tree chosen by the Hunter [28] and Worsley [59] bound. It is clear that none366

of these bounds are tight in this instance. Boros et al. [7] also provide randomly367

generated instances (see Table 1 of Section 4 in their paper) where the Hunter [28]368

and Worsley [59] bound is not tight, athough it provides the best performance among369

the upper bounds considered there.370
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Fig. 2: Kounias [32], Hunter [28] and Worsley [59] spanning trees with general bivari-
ates

Figure 3 demonstrates that with the same set of univariate marginals, when pair-371

wise independence is enforced, the spanning trees obtained from all these approaches372

are identical and the bounds in (2.6) and (2.7) equal the tight bound 0.688 (from373

Theorem 2.3).374

Fig. 3: Optimal spanning tree with pairwise independence when p =
(0.35, 0.19, 0.13, 0.2).

2.2. Comparison with the union bound. The next proposition provides an375

upper bound on the ratio of the Boole union bound and the pairwise independent376

bound in (2.4) in Theorem 2.3.377

Proposition 2.5. For all p ∈ [0, 1]n, we have:

Pu(n, 1,p)

P (n, 1,p)
≤ 4

3
.

The ratio of 4/3 is attained when
∑
i∈[n−1] pi = 1/2 and pn = 1/2.378

Proof. Assume the probabilities are sorted in increasing value as 0 ≤ p1 ≤ p2 ≤379

. . . ≤ pn ≤ 1. It is straightforward to see that if
∑
i∈[n−1] pi > 1, both the bounds380

take the value of P (n, 1,p) = Pu(n, 1,p) = 1. Now assume, α =
∑
i∈[n−1] pi ≤ 1.381
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The ratio is given as:382

Pu(n, 1,p)

P (n, 1,p)
=

min
(∑

i∈[n] pi, 1
)

∑
i∈[n] pi − pn

(∑
i∈[n−1] pi

)
=

min (α+ pn, 1)

α+ pn − αpn
.

383

If α+ pn ≤ 1, then we have:384

Pu(n, 1,p)

P (n, 1,p)
=

α+ pn
α+ pn − αpn

=
1

1− 1
1
α+ 1

pn

≤ 4

3
[where the maximum is attained at α = 1− pn and pn = 1/2].

385

If α+ pn ≥ 1, then we have:386

Pu(n, 1,p)

P (n, 1,p)
=

1

α+ pn − αpn
=

1

α(1− pn) + pn

≤ 4

3
[where the maximum is attained at α = 1− pn and pn = 1/2].

387

This gives the bound of 4/3 when pn = 1/2 and α = 1/2.388

We next illustrate an application of Theorem 2.3 and Proposition 2.5 in comparing389

bounds with dependent and independent random variables in correlation gap analysis.390

Example 2.6 (Correlation gap analysis). The notion of “correlation gap” was391

introduced by Agrawal et al. [1]. It is defined as the ratio of the worst-case expected392

cost for random variables with given univariate marginals to the expected cost when393

the random variables are independent. When c̃ is a Bernoulli random vector and θind394

denotes the independent distribution, the correlation gap is defined as:395

(2.8) κu(p) = sup
θ∈Θ(p)

Eθ[f(c̃)]

Eθind[f(c̃)]
.396

A function f : {0, 1}n → R+ is: (i) submodular if f(c) + f(d) ≥ f(c ∧ d) + f(c ∨397

d) for all c,d ∈ {0, 1}n with c ∧ d = (min(c1, d1), . . . ,min(cn, dn)) and c ∨ d =398

(max(c1, d1), . . . ,max(cn, dn)) and (ii) nondecreasing if f(c) ≥ f(d) for all c ≥ d.399

A key result in this area is that for any nonnegative, nondecreasing, submodular400

function, the correlation gap is always upper bounded by e/(e − 1) (see Calinescu401

et al. [8], Agrawal et al. [1]). The example constructed in these papers show the402

bound is attained for the maximum of binary variables f(c) = maxi∈[n] ci. For a403
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given marginal vector p, the correlation gap in (2.8) reduces to:404

(2.9)

κu(p) =
maxθ∈Θ(p) Eθ[max (c̃1, c̃2, ..., c̃n)]

1−
∏n
i=1(1− pi)

=
maxθ∈Θ(p) Pθ

(∑
i∈[n] c̃i ≥ 1

)
1−

∏n
i=1(1− pi)

=
min

(∑
i∈[n] pi, 1

)
1−

∏n
i=1(1− pi)

.

405

We now provide an extension of this definition by considering the ratio of the worst-406

case expected cost when the random variables are pairwise independent to the ex-407

pected cost when the random variables are independent. This is given as:408

κ(p) = sup
θ∈Θ(p,pij ;(i,j)∈Kn)

Eθ[f(c̃)]

Eθind[f(c̃)]
,409

which reduces in this specific case to:410

κ(p) =
min

(∑
i∈[n] pi − pn

(∑
i∈[n−1] pi

)
, 1
)

1−
∏n
i=1(1− pi)

.411

Clearly κ(p) ≤ κu(p). We next compare these two ratios.412

(a) Worst-case analysis: Assume the marginal probability vector is given by p =
(1/n, . . . , 1/n). For the independent distribution, the probability is given by 1− (1−
1/n)n, while the Boole union bound is equal to one (attained by the distribution
which assigns probability 1/n to each of n support points with ci = 1, cj = 0,∀j 6= i
(for each i ∈ [n]) and zero otherwise). In this case, the limit of the ratio as n goes to
infinity is given by:

lim
n→∞

κu(p) =
1

1− (1− 1/n)n
=

e

e− 1
≈ 1.5819.

Likewise it is easy to verify that with pairwise independence:

lim
n→∞

κ(p) =
1− 1/n (1− 1/n)

1− (1− 1/n)n
=

e

e− 1
≈ 1.5819.

Thus in the worst-case, both these bounds attain the ratio e/(e− 1).413

(b) Instances where the correlation gap can be improved: On the other hand, Propo-414

sition 2.5 illustrates that for the probabilities pn = 1/2 and
∑
i∈[n−1] pi = 1/2, the415

pairwise independent bound is 3/4 and the Boole union bound is one. For example416

with n = 2 where p = (1/2, 1/2), the Boole union bound is one, while both the417

pairwise independent bound and the independent probability is equal to 3/4. Then,418

we have κu((1/2, 1/2)) = 4/3 while κ((1/2, 1/2)) = 1. Thus in specific instances,419

the correlation gap can be tightened by considering pairwise independent random420

variables.421

An application of the 4/3 bound in Proposition 2.5 in the context of distributionally422

robust optimization is discussed next.423
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Example 2.7 (Distributionally robust bottleneck combinatorial optimization).424

Consider a set of n elements indexed by [n] = {1, 2, . . . , n} where element i has a425

cost of ci. Given a set of feasible solutions X ⊆ {0, 1}n, the goal in the bottleneck426

combinatorial optimization problem is to find the solution x ∈ X that minimizes the427

maximum cost among the selected elements (bottleneck cost). This is formulated as428

the bottleneck combinatorial optimization problem:429

min
x∈X⊆{0,1}n

max
i∈[n]

cixi.430

A threshold algorithm to solve this class of problems was developed by Edmonds and431

Fulkerson [15]. Consider a distributionally robust variant of this problem where the432

cost of the element i is a random variable c̃i and the joint distribution of c̃ is not fully433

specified. The distributionally robust bottleneck optimization problem is formulated434

as:435

min
x∈X⊆{0,1}n

max
θ∈Θ

E
[
max
i∈[n]

c̃ixi

]
,436

where Θ is the set of possible joint distributions and the goal is to find the solution437

x ∈ X that minimizes the maximum expected bottleneck cost. Such problems have438

been studied in Agrawal et al. [1] where the distributions are specified up to mar-439

ginal information and Xie et al. [60] where the distributions are assumed to lie in a440

ball around an empirical distribution specified by the Wasserstein distance. Here we441

consider the set of distributions with pairwise independent random variables where442

Θ = Θ(p, pipj ; (i, j) ∈ Kn). The next proposition provides a 4/3-approximation443

algorithm for this problem.444

Proposition 2.8. Let OPT be the optimal value of the distributionally robust
bottleneck combinatorial optimization problem:

OPT = min
x∈X⊆{0,1}n

max
θ∈Θ(p,pipj ;(i,j)∈Kn)

E
[
max
i∈[n]

c̃ixi

]
︸ ︷︷ ︸

f(x)

.

Suppose we can optimize linear functions over the set X ⊆ {0, 1}n in polynomial time.
Then, we can find x̂ in polynomial time such that:

OPT ≤ f(x̂) ≤ 4

3
OPT.

Proof. When x ∈ X ⊆ {0, 1}n, each c̃ixi is a Bernoulli random variable with445

P(c̃ixi = 1) = pixi. Using the Boole union bound, we have:446

max
θ∈Θ(p)

E
[
max
i∈[n]

c̃ixi

]
= min

1,
∑
i∈[n]

pixi

 .447

Consider the solution x̂ which is computable in polynomial time by solving the min-448

imum cost combinatorial optimization problem:449

x̂ ∈ arg min
x∈X⊆{0,1}n

∑
i∈[n]

pixi.450
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Let x∗ denote the optimal solution and θ∗ denote the worst-case pairwise independent451

distribution in OPT. Then we have:452

f(x̂)

OPT
=

maxθ∈Θ(p,pipj ;(i,j)∈Kn) E
[
maxi∈[n] c̃ix̂i

]
Eθ∗

[
maxi∈[n] c̃ix

∗
i

]
≤

maxθ∈Θ(p) E
[
maxi∈[n] c̃ix̂i

]
Eθ∗

[
maxi∈[n] c̃ix

∗
i

]
[since Θ(p, pipj ; (i, j) ∈ Kn) ⊆ Θ(p)]

=
min

(
1,
∑
i∈[n] pix̂i

)
Eθ∗

[
maxi∈[n] c̃ix

∗
i

]
≤

min
(

1,
∑
i∈[n] pix

∗
i

)
Eθ∗

[
maxi∈[n] c̃ix

∗
i

]
[since x∗ is only feasible for the sum objective]

=
Pu(n, 1,p · x∗)
P (n, 1,p · x∗)

[where p · x∗ = (p1x
∗
1, . . . , pnx

∗
n)]

≤ 4
3
[from Proposition 2.5].

453

Proposition 2.8 can be applied to instances such as the bottleneck assignment, bot-454

tleneck matching problem and bottleneck shortest path problems and provides a 4/3-455

approximation for these instances. The next result shows that Theorem 2.3 can be456

used to prove a tight lower bound on the probability of the intersection of pairwise457

independent events.458

2.3. Tight lower bound for k = n. Denote the tightest lower bound on the459

probability of the intersection of pairwise independent events by P (n, n,p). Then,460

P (n, n,p) = min
θ∈Θ(p,pipj ;(i,j)∈Kn)

Pθ

∑
i∈[n]

c̃i = n

 .461

462

Corollary 2.9. Sort the probabilities in increasing value as 0 ≤ p1 ≤ p2 ≤ . . . ≤463

pn ≤ 1. Then,464

(2.10) P (n, n,p) = max

(
p1

(
n∑
i=2

pi − (n− 2)

)
, 0

)
.465

Proof. The proof follows from that of the union probability bound in Theorem466

2.3. Define a complementary Bernoulli random variable di = 1− cn−i+1, i ∈ [n], with467

transformed probabilities P(d̃i = 1) = qi = 1−pn−i+1, i ∈ [n] and thus 0 ≤ q1 ≤ q2 ≤468

. . . ≤ qn ≤ 1. We first note that the maximum probability of the union of pairwise469

independent events can be expressed as an equivalent maximization problem defined470

on d as follows:471

(2.11) P (n, 1,p) = Q(n, n− 1, q) = max
θ∈Θ(q,qiqj ;(i,j)∈Kn)

Pθ

∑
i∈[n]

d̃i ≤ n− 1

472
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where Q(n, n − 1, q) is the maximum probability that at most n − 1 complimentary473

events occur. The proof is then completed by noting that the tight lower intersection474

bound P (n, n, q) can be expressed as475

P (n, n, q) = 1−Q(n, n− 1, q)
= 1− P (n, 1,p)

= 1−min
(∑

i∈[n] pi − pn
(∑

i∈[n−1] pi

)
, 1
)

= 1−min
(

1− (1− pn)
(

1−
∑
i∈[n−1] pi

)
, 1
)

= max

(
q1

(
n∑
i=2

qi − (n− 2)

)
, 0

)
.

476

and replacing q by p.477

Extremal Distribution: The primal distribution which attains the non-trivial part478

of the tight intersection bound P (n, n, q) is shown in Table 3. It can be constructed479

from the union probability extremal distribution θ? in Table 2 by flipping the zeros480

and one’s of the support, reversing the bits (to ensure ordering of the transfomed481

probabilities) and retaining the same joint probabilities θ?(c) but expressed in terms482

of q instead of p.483

Table 3: Probabilities of 2n scenarios.

Scenarios d1 d2 . . . dn−1 dn Probability

2n−1


0 0 . . . 0 0 θ(d)

 1− q1...
...

...
...

...
...

0 1 . . . 1 1 θ(d)

2n−1 − n


1 0 . . . 0 0 0
...

...
...

...
...

...
1 1 . . . 1 0 0

n− 1


1 0 . . . 1 1 q1(1− q2)
..
.

..

.
..
.

...
...

...
1 1 . . . 0 1 q1(1− qn−1)
1 1 . . . 1 0 q1(1− qn)

1 1 1 . . . 1 1 q1
(∑n

i=2 qi − (n− 2)
)

Note that the feasibility of the joint distribution in Table 3 depends on the existence484

of nonnegative values θ(d) for the first 2n−1 scenarios or alternatively by conditioning485

on d1 = 0, there exist nonnegative values of ϑ(d−1) = P(d̃−1 = d−1) for all d−1 =486

(d2 . . . , dn) ∈ {0, 1}n−1 such that:487

(2.12) ∑
d−1∈{0,1}n−1

ϑ(d−1) = 1,∑
d−1∈{0,1}n−1:di=0

ϑ(d−1) = 1− qi, ∀i ∈ [2, n],

∑
d−1∈{0,1}n−1:di=0,dj=0

ϑ(d−1) =
(1− qi)(1− qj)

1− q1
, ∀(i, j) ∈ {(i, j) : 2 ≤ i < j ≤ n},

488

where the constraints in (2.12) is expressed in terms of non-occurence of the Bernoulli489

events represented by d, i.e. di = 0 instead of di = 1. The existence of such a feasible490
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bivariate distribution ϑ can be independently verified from Corollary 2.2 by noting491

that the Bernoulli random vector defined there satisfies P (c̃i = 0) = 1 − pi, ∀i ∈ [n]492

and P (c̃i = 0, c̃j = 0) = (1 − pi)(1 − pj)/(1 − p) for all (i, j) ∈ Kn, subsequently493

replacing pi by qi and setting p = q1 <= mini∈[2,n] qi for n− 1 variables instead of n.494

2.3.1. Connection of Corollary 2.9 to existing results. The intersection495

bound P (n, n,p) derived in Corollary 2.9 is zero when
∑n
i=2 pi ≤ n − 2. In related496

work with identical probabilities p, Benjamini et al. [3] compute that the minimum497

intersection probability for t-wise independent Bernoulli random variables and identify498

when it is zero. They prove that P (n, n, p) = 0 for all t < n and p ≤ 1/2 which499

matches our result with pairwise independence (t = 2) since p ≤ (n−2)/(n−1) ≤ 1/2500

for all n ≥ 3. We will show in Section 4.1 that with pairwise independent identical501

Bernoulli’s, it is possible to derive closed-form tight upper and lower bounds on the502

intersection probability and more generally P (n, k,p) and P (n, k,p) for any k ∈ [n].503

With arbitrary dependence among the Bernoulli random variables, the Fréchet [19]504

lower intersection bound is given as:505

(2.13)

Pu(n, n,p) = minθ∈Θ(p) Pθ
(∑

i∈[n] c̃i = n
)

= max
(∑

i∈[n] pi − (n− 1), 0
)
.506

Clearly, P (n, n,p) ≥ Pu(n, 1,p) and the lower bound is thus improved with pairwise507

independence.508

3. Improved bounds with non-identical marginals for k ≥ 2. In the previ-509

ous section, we resolved the question of finding the tightest bound on the probability510

of the union of pairwise independent events. We now shift attention to the case of at511

least k pairwise independent events occurring where k ≥ 2. Deriving tight bounds for512

general k appears to be challenging. We exploit the ordering of the probabilities to513

provide new upper bounds by creating feasible solutions to the dual linear program514

in (1.6). We make use of the observation that all three bounds in (1.2), (1.4) and515

(1.7) can be expressed in terms of the first two aggregated (or equivalently binomial)516

moments of the sum of pairwise independent random variables with S1 =
∑
i pi and517

S2 =
∑

(i,j)∈Kn pipj . The new ordered bounds improve on these three closed-form518

bounds. We will refer to the original bounds in (1.2), (1.4) and (1.7) as unordered519

bounds from this point onwards. The next theorem provides probability bounds520

for the sum of pairwise independent random variables with possibly non-identical521

marginals when k ≥ 2.522

Theorem 3.1. Sort the input probabilities in increasing order as p1 ≤ . . . ≤ pn.523

Define the partial binomial moment S1r =
∑
i∈[n−r] pi for r ∈ [0, n − 1] and S2r =524 ∑

(i,j)∈Kn−r
pipj for r ∈ [0, n− 2].525

(a) The ordered Schmidt, Siegel and Srinivasan bound is a valid upper bound on526

P (n, k,p):527

(3.1) P (n, k,p) ≤ min

(
1, min
r1∈[0,k−1]

(
S1r1

k − r1

)
, min
r2∈[0,k−2]

(
S2r2(
k−r2

2

))) ,∀k ∈ [2, n].528

(b) The ordered Boros and Prékopa bound is a valid upper bound on P (n, k,p):529

(3.2) P (n, k,p) ≤ min
r∈[0,k−1]

BP (n− r, k − r,p), ∀k ∈ [2, n],530
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where:531

BP (n− r, k − r,p)

=



1, k <
(n− r − 1)S1r − 2S2r

n− r − S1r
+ r,

(k + n− 2r − 1)S1r − 2S2r

(k − r)(n− r)
,

(n− r − 1)S1r − 2S2r

n− r − S1r
+ r ≤ k < 1 +

2S2r

S1r
+ r,

(i− 1)(i− 2S1r) + 2S2r

(k − r − i)2 + (k − r − i)
, k ≥ 1 +

2S2r

S1r
+ r.

532

and i = d((k − r − 1)S1r − 2S2r)/(k − r − S1r)e.533

(c) The ordered Chebyshev bound is a valid upper bound on P (n, k,p):534

(3.3) P (n, k,p) ≤ min
r∈[0,k−1]

CH(n− r, k − r,p),∀k ∈ [2, n],535

where:536

CH(n− r, k − r, p) =

1, k < S1r + r,
S1r − (S2

1r − 2S2r)

S1r − (S2
1r − 2S2r) + (k − r − S1r)2

, S1r + r ≤ k ≤ n.
537

Proof.538

(a) We observe that for any r1 ∈ [0, k − 1] and any subset S ⊆ [n] of the random539

variables of cardinality n− r1, an upper bound is given by:540

P

∑
i∈[n]

c̃i ≥ k

 ≤ P

(∑
i∈S

c̃i ≥ k − r1

)
[since

∑
i∈[n] ci ≥ k implies

∑
i∈S ci ≥ k − r1]

≤
E
[∑

i∈S c̃i
]

k − r1
[using Markov inequality]

=

∑
i∈S pi

k − r1
.

541

The tightest upper bound of this form is obtained by minimizing over all r1 ∈ [0, k−1]542

and subsets S ⊆ [n] with |S| = n− r1:543

(3.4)

P

∑
i∈[n]

c̃i ≥ k

 ≤ min
r1∈[0,k−1]

min
S:|S|=n−r1

∑
i∈S pi

k − r1

= min
r1∈[0,k−1]

∑
i∈[n−r1] pi

k − r1

[using the n− r1 smallest probabilities].

544

We derive the other term in (3.1) using a similar approach while accounting for pair-545

wise independence. For any r2 ∈ [0, k − 2] and any subset S ⊆ [n] of the random546

This manuscript is for review purposes only.



22 A. K. RAMACHANDRA, AND K. NATARAJAN

variables of cardinality n− r2, an upper bound is given by:547

P

∑
i∈[n]

c̃i ≥ k

 ≤ P

(∑
i∈S

c̃i ≥ k − r2

)

= P
((∑

i∈S c̃i
2

)
≥
(
k − r2

2

))
≤

E
[∑

i∈S
∑
j∈S:j>i c̃ic̃j

]
(
k−r2

2

)
[using equation (1.3) and Markov inequality]

=

∑
i∈S
∑
j∈S:j>i E[c̃i]E[c̃j ](
k−r2

2

)
[using pairwise independence]

=

∑
i∈S
∑
j∈S:j>i pipj(
k−r2

2

) .

548

The tightest upper bound of this form is obtained by minimizing over r2 ∈ [0, k − 2]549

and all sets S of size n− r2. This gives:550

(3.5)

P

∑
i∈[n]

c̃i ≥ k

 ≤ min
r2∈[0,k−2]

min
S:|S|=n−r2

∑
i∈S
∑
j∈S:j>i pipj(
k−r2

2

)
= min

r2∈[0,k−2]

(∑
(i,j)∈Kn−r2

pipj(
k−r2

2

) )
[using the n− r2 smallest probabilities].

551

From the bounds (3.4) and (3.5), we get:552

P (n, k,p) ≤ min

(
1, min
r1∈[0,k−1]

(
S1r1

k − r1

)
, min
r2∈[0,k−2]

(
S2r2(
k−r2

2

))) , ∀k ∈ [2, n],553

where S1r1 =
∑
i∈[n−r1] pi for r1 ∈ [0, n − 1] and S2r2 =

∑
(i,j)∈Kn−r2

pipj for r2 ∈554

[0, n−2]. One can interpret this bound as creating a set of dual feasible solutions and555

picking the best among them. The dual formulation is:556

P (n, k,p) = min
∑

(i,j)∈Kn

λijpipj +
∑
i∈[n]

λipi + λ0

s.t
∑

(i,j)∈Kn

λijcicj +
∑
i∈[n]

λici + λ0 ≥ 0 ∀c ∈ {0, 1}n,∑
(i,j)∈Kn

λijcicj +
∑
i∈[n]

λici + λ0 ≥ 1, ∀c ∈ {0, 1}n :
∑
t ct ≥ k.

557

The components of the second term in (3.1) are obtained by choosing dual feasible558

solutions with λi = 1/(k − r1) for i ∈ [n − r1] and setting all other dual variables to559

0. Similarly, the components of the third term are obtained by choosing dual feasible560

solutions with λij = 1/
(
k−r2

2

)
for (i, j) ∈ Kn−r2 and setting all other dual variables561

to 0.562

This manuscript is for review purposes only.



TIGHT PROBABILITY BOUNDS WITH PAIRWISE INDEPENDENCE 23

(b) The bound in (3.2) is obtained by using the inequality:563

P

∑
i∈[n]

c̃i ≥ k

 ≤ P

 ∑
i∈[n−r]

c̃i ≥ k − r

 , ∀r ∈ [0, k − 1],564

in conjunction with the bound in (1.7) computed from Boros and Prékopa [6]. We565

compute an upper bound on P
(∑

i∈[n−r] c̃i ≥ k − r
)

by using the aggregated mo-566

ments S1r and S2r with the Boros and Prékopa bound from (1.7) as follows:567

BP (n− r, k − r,p)

=



1, k <
(n− r − 1)S1r − 2S2r

n− r − S1r
+ r,

(k + n− 2r − 1)S1r − 2S2r

(k − r)(n− r)
,

(n− r − 1)S1r − 2S2r

n− r − S1r
+ r ≤ k < 1 +

2S2r

S1r
+ r,

(i− 1)(i− 2S1r) + 2S2r

(k − r − i)2 + (k − r − i)
, k ≥ 1 +

2S2r

S1r
+ r,

568

where i = d((k − r − 1)S1r − 2S2r)/(k − r − S1r)e. Since the relation P (n, k,p) ≤569

BP (n − r, k − r,p) is satisfied for every 0 ≤ r ≤ k − 1, the best upper bound on570

P (n, k,p) is obtained by taking the minimum over all possible values of r:571

P (n, k,p) ≤ minr∈[0,k−1]BP (n− r, k − r,p), ∀k ∈ [2, n].572

(c) Proceeding in a similar manner as in (b), by using the aggregated moments S1r573

and S2r with Chebyshev bound, the upper bound for a given r ∈ [0, k − 1] can be574

written as follows:575

CH(n− r, k − r, p) =

1, k < S1r + r,
S1r − (S2

1r − 2S2r)

S1r − (S2
1r − 2S2r) + (k − r − S1r)2

, S1r + r ≤ k ≤ n.
576

The best upper bound on P (n, k,p) is obtained by taking the minimum over all577

possible values of r:578

P (n, k,p) ≤ min
r∈[0,k−1]

CH(n− r, k − r,p), ∀k ∈ [2, n].579

3.1. Connection to existing results. Prior work in Rüger [52] shows that
ordering of probabilities provides the tightest upper bound on the probability of n
Bernoulli random variables adding up to at least k, when allowing for arbitrary de-
pendence. Specifically, the bound derived there is:

Pu(n, k,p) = max
θ∈Θ(p)

Pθ

∑
i∈[n]

c̃i ≥ k

 = min

(
1, min
r∈[0,k−1]

(
S1r

k − r

))
.

However, this bound does not use pairwise independence information. Part (a) of580

Theorem 3.1 tightens the analysis in Rüger [52] for pairwise independent random581
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variables. It is also straightforward to see that the ordered Schmidt, Siegel and582

Srinivasan bound in (3.1) is at least as good as the bound in (1.4) (simply plug in583

r = 0). Building on the ordering of probabilities, the bound in (3.2) uses aggregated584

binomial moments for k ordered sets of random variables of size n − r where r ∈585

[0, k− 1]. When r = 0, the bound in (3.2) reduces to the original aggregated moment586

bound of Boros and Prékopa in (1.7) and hence this bound is at least as tight. All587

the bounds in Theorem 3.1 are clearly efficiently computable.588

It is easy to verify that the ordered Boros and Prékopa bound is at least as good as589

the other two ordered bounds, i.e.,590

Ordered bound (3.2) ≤ min (Ordered bound (3.1),Ordered bound (3.3)) .591

This is true since, each term of the ordered bounds are derived by finding upper592

bounds on the probability that the sum of the first n − r random variables takes a593

value of at least k − r using only the first two moments of the sum of these random594

variables. Since the Boros and Prékopa bound is the tightest upper bound possible595

when using only the first two moments of the sum, each term in the ordered Boros596

and Prékopa bound is at least as good as the corresponding term in the other two597

ordered bounds. Taking the minimum over all these terms implies that the ordered598

Boros and Prékopa bound must be at least as good as the other two bounds.599

3.2. Further tightening of ordered bounds:. It is also worth mentioning600

that the bounds in Theorem 3.1 can in fact be strengthened further by using the601

tightest possible bound for k = 1 from Theorem 2.3. Specifically, we can tighten the602

ordered Schmidt, Siegel and Srinivasan bound in (3.1) as follows:603

min

1, min
r∈[0,k−2]

min

(
S1r

k − r
,
S2r(
k−r

2

)) , ∑
i∈[n−k+1]

pi − pn−k+1

∑
i∈[n−k]

pi

 .604

where the last term corresponds to r1 = k − 1 and is obtained by observing that:605

P

∑
i∈[n]

c̃i ≥ k

 ≤ P

 ∑
i∈[n−k+1]

c̃i ≥ 1


≤

∑
i∈[n−k+1]

pi − pn−k+1

∑
i∈[n−k]

pi

[from Theorem 2.3]
≤

∑
i∈[n−k+1] pi

= S1(k−1)/(k − (k − 1)).

606

The Boros and Prékopa bound and Chebyshev ordered bounds in (3.2) and (3.3) can607

be similarly tightened. Unlike the bounds in Theorem 3.1, these tightened bounds608

use partially disaggregated moment information. We next provide two numerical609

examples to illustrate the impact of ordering on the quality of the three bounds. We610

restrict attention, however, to the aggregated ordered moment bounds in Theorem611

3.1 only.612

3.3. Numerical illustrations.613

Example 3.2 (Non-identical marginals). Consider an example with n = 12 ran-614
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dom variables with the probabilities given by615

p1 = 0.0651, p2 = 0.0977, p3 = 0.1220, p4 = 0.1705, p5 = 0.3046, p6 = 0.4402,
p7 = 0.4952, p8 = 0.6075, p9 = 0.6842, p10 = 0.8084, p11 = 0.9489, p12 = 0.9656.

616

Table 4 compares the three ordered bounds with the three unordered bounds and the617

tight upper bound. Numerically, the ordered Boros and Prékopa bound (3.2) is found618

to be tight in this example for k = 7, 8, 9, 12 while the ordered Schmidt, Siegel and619

Srinivasan bound (3.1) is tight for k = 12. The ordered Boros and Prékopa bound620

is uniformly the best performing of the three bounds, while among the other two621

ordered bounds, none uniformly dominates the other. For example, comparing the622

ordered bounds when 7 ≤ k ≤ 9, the Chebyshev bound outperforms the Schmidt,623

Siegel and Srinivasan bound, but when k = 6 or 10 ≤ k ≤ 12, the Schmidt, Siegel and624

Srinivasan bound does better. Comparing the unordered bounds when 7 ≤ k ≤ 9,625

the Schmidt, Siegel and Srinivasan bound (1.4) outperforms the Chebyshev bound626

(1.2) when k = 6 but for all k ≥ 7, bound (1.2) does better. In terms of absolute627

difference between ordered and unordered bounds, ordering provides the maximum628

improvement to the Schmidt, Siegel and Srinivasan bound, followed by the Boros and629

Prékopa bound and the Chebyshev bound.630

631

Table 4: Upper bound on the probability of sum of random variables equaling at least
k for n = 12. For each value of k, the bottom row provides the tightest bound which
can be computed in this example by solving an exponential sized linear program. The
underlined instances illustrate cases when the other upper bounds are tight.

Bound k ∈ [1, 4] k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12
(1.2) 1 1 0.9553 0.5192 0.2552 0.1424 0.0889 0.0603 0.0434
(3.3) 1 1 0.9553 0.5192 0.2552 0.1424 0.0883 0.0549 0.0307
(1.4) 1 1 0.9517 0.6831 0.5123 0.3985 0.3188 0.2608 0.2173
(3.1) 1 1 0.9489 0.6162 0.3620 0.1827 0.0712 0.0250 0.0064
(1.7) 1 1 0.9497 0.5018 0.2509 0.1326 0.0795 0.0530 0.0379
(3.2) 1 1 0.9254 0.5018 0.2509 0.1290 0.0712 0.0249 0.0064
Tight 1 0.9957 0.8931 0.5018 0.2509 0.1290 0.0692 0.0230 0.0064

Example 3.3 (Non-identical marginals). In this example, we numerically com-632

pute the improvement of the new ordered bounds over the unordered bounds for633

n = 100 variables by creating 500 instances by randomly generating the probabilities634

p = (p1, p2, .., p100). First, we consider small marginal probabilities by uniformly and635

independently generating the entries of p between 0.01 and 0.05. When k = n, Figure636

4a plots the three ordered bounds while Figure 4b shows the percentage improvement637

of the three bounds over their unordered counterparts. The percentage improvement638

is computed as
(
[unordered-ordered]/unordered

)
× 100%. In this example with small639

marginals, the ordered Schmidt, Siegel and Srinivasan bound (3.1) is equal to the640

ordered Boros and Prékopa bound (3.2) as seen in Figure 4a. Ordering tends to im-641

prove the Schmidt, Siegel and Srinivasan bound significantly for smaller probabilities,642

since both the partial binomial moment terms S1r and S2r are smaller with smaller643

marginal probabilities for all r ∈ [0, k − 1].644

The percentage improvement due to ordering in figure 4b is consistently above645

80% for the Schmidt, Siegel and Srinivasan bound, while that of the Boros and646

Prékopa bound is around 60%. The ordered Chebyshev bound (3.3) shows an al-647
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(a) Actual value of the ordered bounds (b) Percentage improvement of ordered bounds

Fig. 4: Smaller marginal probabilities pi with n = 100, k = 100 and 500 instances.

most negligible improvement by ordering in this example.648

Next, we consider similar plots when k = n−1 with larger marginal probabilities.649

The entries of p are generated uniformly and independently between 0.05 and 0.99.650

In Figure 5a, the ordered Chebyshev bound (3.3) performs better than the ordered

(a) Actual value of the ordered bounds (b) Percentage improvement of ordered bounds

Fig. 5: Larger marginal probabilities pi with n = 100, k = 99 and 500 instances.

651
Schmidt, Siegel and Srinivasan bound (3.1). In Figure 5b, the percentage improvement652

due to ordering is again most significant for the Schmidt, Siegel and Srinivasan bound,653

being consistently above 90% while that of the Boros and Prékopa bound is less than654

40% and that of the Chebyshev bound is less than 20%. It is also clear from Figures655

4 and 5 that the ordered Boros and Prékopa bound (3.2) is the tightest of the three656

bounds across the instances, while among the other two bounds, none uniformly657

dominates the other.658

4. Tightness in special cases. In this section, we identify two tight instances,659

one for the unordered bounds in (1.2), (1.4) and (1.7) and the other for the corre-660

sponding ordered bounds derived in Theorem 3.1. Firstly, in Section 4.1, for identical661

variables, the symmetry in the problem allows for closed-form tight bounds for any662

k ∈ [2, n]. We prove this by showing an equivalence of the exponential sized lin-663

ear program (1.5) which computes the exact bound with a polynomial sized linear664

program analyzed in computing the Boros and Prékopa bound in (1.7). We use the665

exact bound to identify instances when the other two unordered bounds are tight.666
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The result with identical marginals is further extended to show tightness for t-wise667

independent variables. Secondly, in Section 4.2, we demonstrate the usefulness of the668

ordered bounds by identifying a special case when n− 1 marginals are identical (with669

additional conditions on the probability and k), when the ordered bounds in (3.1) and670

(3.2) are tight.671

4.1. Tightness of bounds with identical marginals. In this section, we672

provide probability bounds for n pairwise independent random variables adding up673

to at least k ∈ [2, n] when their marginals are identical. The next theorem provides674

the tight bound with identical marginals, by applying the Boros and Prékopa bound675

in (1.7) to pairwise independent variables with ξ̃ =
∑
i∈[n] c̃i.676

Theorem 4.1. Assume pi = p ∈ (0, 1) for i ∈ [n]. Let P (n, k, p) represent the677

tightest upper bound on the probability that n pairwise independent identical Bernoulli678

random variables add up to at least k ∈ [n]. Then,679

(4.1)

P (n, k, p) =


1, k < (n− 1)p, (a)
((n− 1)(1− p) + k)p

k
, (n− 1)p ≤ k < 1 + (n− 1)p, (b)

(i− 1)(i− 2np) + n(n− 1)p2

(k − i)2 + (k − i)
, k ≥ 1 + (n− 1)p, (c),

680

where i = dnp(k − 1− (n− 1)p)/(k − np)e.681

Proof. The tightest upper bound P (n, k, p) is the optimal value of the linear682

program:683

(4.2)

P (n, k, p) = max
∑

c∈{0,1}n:
∑
i ci≥k

θ(c)

s.t
∑

c∈{0,1}n
θ(c) = 1,∑

c∈{0,1}n:ci=1

θ(c) = p, ∀i ∈ [n],∑
c∈{0,1}n:ci=1,cj=1

θ(c) = p2, ∀(i, j) ∈ Kn,

θ(c) ≥ 0, ∀c ∈ {0, 1}n,

684

where the decision variables are the joint probabilities θ(c) = P(c̃ = c) for c ∈ {0, 1}n.685

Consider the following linear program in n+1 variables which provides an upper bound686

on P (n, k, p):687

(4.3)

BP (n, k, p) = max
∑
`∈[k,n]

v`

s.t.
∑
`∈[0,n]

v` = 1,∑
`∈[1,n]

`v` = np,

∑
`∈[2,n]

(
`

2

)
v` =

(
n

2

)
p2,

v` ≥ 0, ∀` ∈ [0, n],

688

where the decision variables are the probabilities v` = P(
∑
i∈[n] c̃i = `) for l ∈ [0, n].689

Linear programs of the form (4.3) have been studied in Boros and Prékopa [6] in690
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the context of aggregated binomial moment problems. As we shall see, these two691

formulations are equivalent with identical pairwise independent random variables.692

(1) P (n, k, p) ≤ BP (n, k, p): Given a feasible solution to (4.2) denoted by θ, con-693

struct a feasible solution to the linear program (4.3) as:694

v` =
∑

c∈{0,1}n:
∑
i ci=l

θ(c), ∀l ∈ [0, n].695

696

By taking expectations on both sides of the equality (1.3), we get:697

∑
l∈[j,n]

(
l

j

)
P

∑
i∈[n]

c̃i = l

 = E [Sj(c̃)] , ∀j ∈ [0, n].698

699

Applying it for j = 0, 1, 2, we get the three equality constraints in (4.3):700 ∑
`∈[0,n]

v` = 1,

∑
`∈[1,n]

`v` = E

∑
i∈[n]

c̃i

 = np,

∑
`∈[2,n]

(
`

2

)
v` = E

 ∑
(i,j)∈Kn

c̃ic̃j

 = n(n− 1)p2/2.

701

Lastly, the objective function value of this feasible solution satisfies:702

n∑
`=k

v` =

n∑
`=k

∑
c∈{0,1}n:

∑
i ci=l

θ(c)

=
∑

c∈{0,1}n:
∑
i ci≥k

θ(c).
703

Hence, P (n, k, p) ≤ BP (n, k, p).704

(2) P (n, k, p) ≥ BP (n, k, p): Given an optimal solution to (4.3) denoted by v,705

construct a feasible solution to the linear program (4.2) by distributing v` equally706

among all the realizations in {0, 1}n with exactly ` ones:707

θ(c) =
v`(
n
`

) , ∀c ∈ {0, 1}n :
∑
i∈[n] ci = `,∀` ∈ [0, n].708

The first constraint in (4.2) is satisfied since:709 ∑
c∈{0,1}n

θ(c) =
∑
`∈[0,n]

∑
c∈{0,1}n:

∑
i ci=l

v`(
n
`

)
[since

∣∣{0, 1}n :
∑
i∈[n] ci = `

∣∣ =
(
n
`

)
]

=
∑
`∈[0,n]

v`

= 1.

710
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The second constraint in (4.2) is satisfied since:711 ∑
c∈{0,1}n:cj=1

θ(c) =
∑
`∈[1,n]

v`(
n
`

)(n− 1

`− 1

)
[since

∣∣{0, 1}n :
∑
i∈[n] ci = `, cj = 1

∣∣ =
(
n−1
`−1

)
]

=
∑
`∈[1,n]

`v`
n

= p.

712

The third constraint in (4.2) satisfied since:713 ∑
c∈{0,1}n:ci=1,cj=1

θ(c) =
∑
`∈[2,n]

v`(
n
`

)(n− 2

`− 2

)
[since

∣∣{0, 1}n :
∑
t∈[n] ct = `, ci = 1, cj = 1

∣∣ =
(
n−2
`−2

)
]

=
2

n(n− 1)

∑
`∈[2,n]

(
`

2

)
v`

= p2.

714

The objective function value of the feasible solution is given by:715 ∑
c∈{0,1}n:

∑
i ci≥k

θ(c) =
∑
`∈[k,n]

∑
c∈{0,1}n:

∑
i ci=l

θ(c)

=
∑
`∈[k,n]

v`

= BP (n, k, p).

716

Hence, the optimal objective value of the two linear programs are equivalent. The717

formula for the tight bound in the theorem is then exactly the Boros and Prékopa718

bound in (1.7) (the bound BP (n, k, p) is also derived in the work of [53], although719

tightness of the bound is not shown there). It is straightforward to verify that the720

following distributions attain the bounds for each of the cases (a)-(c) in the statement721

of the theorem:722

(a) The probabilities are given as:723

θ(c) =



(1− p)(j − (n− 1)p)(
n−1
j−1

) , if
∑
t∈[n]

ct = j − 1,

(1− p)(1 + (n− 1)p− j)(
n−1
j

) , if
∑
t∈[n]

ct = j,

n(n− 1)p2 + (j − 1)(j − 2np)

(n− j)2 + (n− j)
, if

∑
t∈[n]

ct = n,

724

where j = d(n− 1)pe and all other support points have zero probability.725
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(b) The probabilities are given as:726

θ(c) =



1− p
k

(k − (n− 1)p), if
∑
t∈[n]

ct = 0,

p(1− p)(
n−2
k−1

) , if
∑
t∈[n]

ct = k,

p((n− 1)p− (k − 1))

n− k
, if

∑
t∈[n]

ct = n,

727

where all other support points have zero probability.728

(c) The probabilities are given as:729

θ(c) =



np[(n− 1)p− (k + i− 1)] + ik(
n
i−1

)
(k − i+ 1)

, if
∑
t∈[n]

ct = i− 1,

np[(k + i− 2)− (n− 1)p]− k(i− 1)(
n
i

)
(k − i)

, if
∑
t∈[n]

ct = i,

n(n− 1)p2 + (i− 1)(i− 2np)(
n
k

)
[(k − i)2 + (k − i)]

, if
∑
t∈[n]

ct = k,

730

where all other support points have zero probability and the index i is evaluated as731

stated in equation (4.1)(c). It is straightforward to see that with identical marginals,732

the tight union bound in Theorem 2.3 reduces to the bound in case (b) of Theorem733

4.1.734

4.1.1. Connection of Theorem 4.1 to existing results. Tightness results735

with identical Bernoulli random variables have been established in the literature in736

the context of occurence of at least and exactly k out of n events for specific regimes737

of the parameters n, k and p. Theorem 4.1 however, provides the tight bounds for all738

values of (n, k, p). Recent work by Garnett [22] provides the tight upper bound on the739

probability that the sum of pairwise independent Bernoulli random variables exceeds740

the mean by a small amount (this corresponds to case (b)). Pinelis [44] derives a741

closed-form tight lower bound on the probability of occurence of exactly one of out742

n events. Benjamini et al. [3] and Peled et al. [43] derived closed-form upper and743

lower bounds (not necessarily tight) on the maximal intersection probability of more744

general t-wise independent Bernoulli random variables (this corresponds to k = n in745

case (c) for t = 2). These bounds were shown to match each other up to multiplicative746

factors of lower order in a large regime of the parameters n, p, t. The connection of the747

intersection probability with the linear program based approach of Boros and Prékopa748

[6] has been mentioned in these papers, although the equivalence for all values of k749

is not established. Corollary 4.2 in this paper, however, establishes the equivalence750

for all values of n, k, p, t. The usefulness of Theorem 4.1 lies in the fact that it can be751

extended to incorporate a wide variety of cases involving identical Bernoulli events by752

using the results from Boros and Prékopa [6] as follows:753

i) Tight closed-form lower bounds on probability of occurrence of at least k out of n754

events755

ii) Tight closed-form upper and lower bounds on the probability of occurence of ex-756

actly k out of n events757

iii) Tight linear program based upper and lower bounds for t-wise independent vari-758

ables (t ≥ 3) from the symmetry assumptions (see Corollary 4.2).759

This manuscript is for review purposes only.



TIGHT PROBABILITY BOUNDS WITH PAIRWISE INDEPENDENCE 31

We note that when k ≥ 1 + (n − 1)p, the tight lower bound from [6] can be derived760

as:761

P (n, k, p) =

{ (
2+(n−1)p−k

)
p

n−k+1 , 1 + (n− 1)p ≤ k < 2 + (n− 1)p

0, k ≥ 2 + (n− 1)p.
762

When k = n ≥ 1 + (n − 1)p, this bound reduces to max (p ((n− 1)p− (n− 2)) , 0)763

which is exactly the intersection bound computed in Corollary 2.9 with identical764

probabilities.765

Corollary 4.2. Consider identical t-wise independent Bernoulli random vari-766

ables with probabilities p ∈ (0, 1) where t ∈ [2, n]. Then, the tightest upper bound on767

the probability of n such variables adding up to at least k ∈ [n], denoted by P (n, k, p, t),768

can be computed as the optimal value of the aggregated linear program proposed by769

Prékopa [48]:770

(4.4)

P (n, k, p, t) = max

n∑
`=k

v`

s.t.

n∑
`=m

(
`

m

)
v` =

(
n

m

)
pm, ∀m ∈ [0, t],

v` ≥ 0, ∀` ∈ [0, n],

771

where the decision variables are the probabilities v` = P(
∑n
i=1 c̃i = `) for l ∈ [0, n].772

Proof. The proof is straightforward from the proof of Theorem 4.1 which implies773

the equivalence of (4.4) with the large-sized linear program:774

(4.5)

P (n, k, p, t) = max
∑

c∈{0,1}n:
∑
i ci≥k

P(c)

s.t.
∑

c∈{0,1}n
P(c) = 1,∑

c∈{0,1}n: ci=1, ∀i∈J

P(c) = pm, ∀J ∈ Im, m ∈ [t],

P(c) ≥ 0, ∀c ∈ {0, 1}n,

775

where Im = {I ⊆ [n] : |I| = m}. In particular for any given feasible solution of (4.4),776

we can distribute the probability mass v` evenly across the
(
n
`

)
scenarios for every777

` ∈ [0, n] and satisfy all the constraints in (4.5) while for any given feasible solution778

of (4.5), we can aggregate the probabilities P(c) as779

v` =
∑

c∈{0,1}n:
∑
i ci=l

P(c), ∀l ∈ [0, n].780

781

and satisfy all constraints in (4.4).782

We note that for 3-wise independent variables, a closed-form expression for the optimal783

objective in (4.4) using the first three binomial moments has been provided in [6].784

Further, the corresponding tight lower bound P (n, k, p, t) can be computed as the785

optimal value of the minimization version of the aggregated linear program in (4.4).786

4.1.2. Tightness of alternative bounds. We next discuss an application of787

Theorem 4.1. Since the marginals are identical, it is easy to see that the ordered788
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bounds in Theorem 3.1 reduce to the unordered bounds corresponding to r = 0.789

While the unordered Boros and Prékopa bound provides the tightest upper bound790

with identical marginals, the formula is more involved than the unordered Chebyshev791

bound which reduces to:792

(4.6) P (n, k, p) ≤

{
1, k < np,

np(1− p)/
(
np(1− p) + (k − np)2

)
, np ≤ k ≤ n.

793

and the unordered Schmidt, Siegel and Srinivasan bound which reduces to:794

(4.7) P (n, k, p) ≤ min

(
1,
np

k
,
n(n− 1)p2

k(k − 1)

)
.795

It is possible to then use Theorem 4.1 to identify conditions on the parameters (n, k, p)796

for which the bounds in (4.6) and (4.7) are tight. We only focus on the non-trivial797

cases where the tight bound is strictly less than one and n ≥ 3. Henceforth, the798

Chebyshev and Schmidt, Siegel and Srinivasan bounds referred to in this section are799

the unordered bounds.800

Proposition 4.3.801

(a) For p = α/(n− 1) and any integer α ∈ [n− 2], the Chebyshev bound in (4.6) is802

tight for the values of k = α+ 1 and k = n.803

(b) For p ≤ 1/(n − 1), the Schmidt, Siegel and Srinivasan bound in (4.7) is tight804

for all k ∈ [2, n] while for p > 1/(n − 1), the bound is tight for all values of k ∈805

[d1 + (n− 1)pe ,
⌊
n(n− 1)p2/(np− 1)

⌋
].806

Proof. Since Theorem 4.1 provides the tight bound, we simply need to show the807

equivalence with the bounds in (4.6) and (4.7) for the instances in the proposition.808

(a) Consider p = α/(n− 1) for any integer α ∈ [n− 2].809

1. Set k = α+ 1. This corresponds to case (c) in Theorem 4.1. Plugging in the810

values, the index i which is required for finding the tight bound is given by:811

i =

⌈
nα(α+ 1− 1− α)/(n− 1)

α+ 1− nα/(n− 1)

⌉
= 0.

812

The corresponding tight bound in (4.1) gives:813

P (n, k, p) =
nα

(n− 1)(α+ 1)
=

np

np+ 1− p
.814

It is straightforward to verify by plugging in the values that the Chebyshev815

bound is exactly the same.816

2. Set k = n. This corresponds to case (c) in Theorem 4.1. Plugging in the817

values, the index i in the tight bound is given by:818

i =

⌈
nα(n− 1− α)/(n− 1)

n− nα/(n− 1)

⌉
= α.

819

The tight bound in (4.1) gives:820

P (n, k, p) =
α

(n− 1)(n− α)
=

p

p+ n(1− p)
.821
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It is straightforward to verify by plugging in the values that the Chebyshev822

bound is exactly the same in this case.823

(b) Observe that the last two terms in the Schmidt, Siegel and Srinivasan bound in824

(4.7) satisfy:825

n(n− 1)p2

k(k − 1)
≤ np

k
when k ≥ 1 + (n− 1)p.826

827

Since k ≥ 1+(n−1)p implies 1 ≥ np/k, the bound in (4.7) reduces to n(n− 1)p2/k(k − 1).
The range of k ≥ 1+(n−1)p corresponds to case (c) in Theorem 4.1. If k = 1+(n−1)p,
the index i = dnp(k − (1 + (n− 1)p))/(k − np)e = 0 and the tight bound from (4.1)
is:

np

1 + (n− 1)p
,

which is exactly the Schmidt, Siegel and Srinivasan bound. We can also verify that828

when the index i = 1 in case (c), then the tight bound in (4.1) reduces to:829

P (n, k, p) =
n(n− 1)p2 + (1− 1)(1− 2np)

(k − 1)2 + (k − 1)

=
n(n− 1)p2

k(k − 1)
.

830

We now identify conditions when k > 1 + (n− 1)p and the index i is equal to one.831

1. Consider 0 < p ≤ 1/(n − 1). For the values of p in this interval, the valid832

range of k in case (c) corresponds to integer values of k ≥ 1 + (n− 1)p which833

means k ≥ 2. For the probability 0 < p ≤ 1/n, the index i satisfies:834

i =

⌈
np

(
1− 1− p

k − np

)⌉
= 1

[since 0 < np ≤ 1 and 1− p ∈ (0, 1) and k − np > 1− p].

835

For the probability 1/n < p ≤ 1/(n− 1), the index i satisfies:836

i =

⌈
(n− 1)p

(
k−1
n−1 − p
k
n − p

)⌉
= 1

[since 0 < (n− 1)p ≤ 1 and 0 < k−1
n−1 − p ≤

k
n − p].

837

Hence, the bound in (4.7) is tight in this case for all integer values of k ≥ 2.838

2. For p > 1/(n− 1), the index i = 1 when k(np− 1) ≤ n(n− 1)p2. This corre-839

sponds to all integer values k ∈ [d1 + (n− 1)pe ,
⌊
n(n− 1)p2/(np− 1)

⌋
].840

A specific instance to show the tightness of the Chebyshev bound is to set p = 1/2,841

k = n and n = 2m− 1 where m is an integer. Using m independent Bernoulli random842

variables it is then possible to construct n pairwise independent Bernoulli random843

variables (see Tao [55], Goemans [25], Pass and Spektor [42] for this construction).844

Proposition 4.3(a) includes this instance (set α = (n− 1)/2, k = n and n = 2m − 1).845

In addition, Proposition 4.3(a) identifies other values of p and k where the Chebyshev846

bound is tight. Proposition 4.3(b) also shows that the Schmidt, Siegel and Srinivasan847

bound is tight for identical marginals for small probability values (p ≤ 1/(n− 1)), for848

all values of k, except k = 1. We now provide a numerical illustration of the results849

in Theorem 4.1 and Proposition 4.3.850
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Example 4.4 (Identical marginals). In Table 5, we provide a numerical compari-851

son of the bounds for n = 11 for a set of values of p and k. The instances in Table 5852

cover all the conditions identified in Proposition 4.3 when the Chebyshev and Schmidt,853

Siegel and Srinivasan bounds are tight. The instances when the Chebyshev bound854

is tight correspond to (i) p = 0.1 (here α = 1 and the Chebyshev bound is tight for855

k = 2 and k = 11), (ii) p = 0.2 (here α = 2 and the Chebyshev bound is tight for856

k = 3 and k = 11) and (iii) p = 0.5 (here α = 5 and the Chebyshev bound is tight for857

k = 6 and k = 11). The Schmidt, Siegel and Srinivasan bound is tight for the small858

values of p = 0.01, 0.05, 0.10 (which are less than or equal to 1/(n− 1) = 0.1) and for859

all values of k, except k = 1.860

Table 5: Upper bound on probability of sum of random variables for n = 11. For
each value of p and k, the table provides the tight bound in (4.1) followed by the
Chebyshev bound (4.6) and the Schmidt, Siegel and Srinivasan bound (4.7). The
underlined instances illustrate nontrivial cases when the upper bounds in either (4.6)
or (4.7) are tight.

p/k 1 2 3 4 5 6 7 8 9 10 11
0.01 0.1090 0.00550 0.00184 0.00092 0.00055 0.00037 0.00027 0.00020 0.00016 0.00013 0.00010

0.1208 0.02959 0.01288 0.00715 0.00454 0.00313 0.00229 0.00175 0.00138 0.00112 0.00092
0.11000 0.00550 0.00184 0.00092 0.00055 0.00037 0.00027 0.00020 0.00016 0.00013 0.00010

0.05 0.5250 0.13750 0.04583 0.02292 0.01375 0.00917 0.00655 0.00491 0.00382 0.00306 0.00250
0.7206 0.19905 0.08008 0.04205 0.02571 0.01729 0.01240 0.00933 0.00726 0.00582 0.00477
0.5500 0.13750 0.04583 0.02292 0.01375 0.00917 0.00655 0.00491 0.00382 0.00306 0.00250

0.10 1 0.55000 0.18333 0.09167 0.05500 0.03667 0.02620 0.01965 0.01528 0.01223 0.01000
1 0.55000 0.21522 0.10532 0.06112 0.03960 0.02766 0.02038 0.01562 0.01235 0.01000
1 0.55000 0.18333 0.09167 0.05500 0.03667 0.02620 0.01965 0.01528 0.01223 0.01000

0.11 1 0.59950 0.22184 0.11092 0.06655 0.04437 0.03037 0.02170 0.01627 0.01266 0.01013
1 0.63310 0.25156 0.12154 0.06975 0.04484 0.03113 0.02283 0.01744 0.01375 0.01112
1 0.60500 0.22184 0.11092 0.06655 0.04437 0.03170 0.02377 0.01849 0.01479 0.01210

0.15 1 0.78750 0.41250 0.19584 0.09792 0.05875 0.03916 0.02798 0.02098 0.01632 0.01306
1 0.91968 0.43489 0.20253 0.11109 0.06901 0.04672 0.03362 0.02531 0.01972 0.01579
1 0.82500 0.41250 0.20625 0.12375 0.08250 0.05893 0.04419 0.03437 0.02750 0.02250

0.20 1 1 0.73334 0.33334 0.16667 0.10000 0.06667 0.04762 0.03572 0.02778 0.02223
1 1 0.73334 0.35200 0.18334 0.10865 0.07097 0.04972 0.03667 0.02812 0.02223
1 1 0.73334 0.36667 0.22000 0.14667 0.10477 0.07858 0.06112 0.04889 0.04000

0.50 1 1 1 1 1 0.91667 0.54167 0.29167 0.17500 0.11667 0.08334
1 1 1 1 1 0.91667 0.55000 0.30556 0.18334 0.11957 0.08334
1 1 1 1 1 0.91667 0.65477 0.49108 0.38195 0.30556 0.25000

It is also clear why the Schmidt, Siegel and Srinivasan bound is not tight for861

k = 1, since it just reduces to the Markov bound np and does not exploit the pairwise862

independence information. For k = 1, the tight bound from Theorem 4.1 is given863

by np − (n − 1)p2 (see Theorem 2.3 which reduces to the same bound for k = 1).864

For larger values of p above 0.1, such as p = 0.11 in the table, from Proposition865

4.3(b), the Schmidt, Siegel and Srinivasan bound is tight for k ∈ [d2.1e , b6.33c] which866

corresponds to k ∈ [3, 6]. This can be similarly verified for the other probabilities867

p = 0.15, 0.2, 0.5 in the table.868

4.2. Tightness of ordered bounds in a special case. In this section, we869

provide an instance when two of the ordered bounds derived in Section 3 are shown870

to be tight. While the ordered bounds in Theorem 3.1 are not tight in general, the871

next proposition identifies a special case with almost identical marginals when the872

bounds of Schmidt, Siegel and Srinivasan in (3.1) and Boros and Prékopa in (3.2) are873

shown to be attained.874

Proposition 4.5. Suppose the marginal probabilities equal p ∈ (0, 1/(n − 1)] for875

n − 1 random variables and q ∈ (0, 1) for one random variable. Then, the ordered876
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bounds in (3.1) and (3.2) are tight for the following three instances and are given by:877

(4.8)

P (n, k, p, q) =



(
n−1

2

)
p2(

k−1
2

) , k ≥ 3, q ≥ (n− 2)p, (a),(
n−1

2

)
p2(

k−1
2

) , k ∈
[
d2 + (n− 2)p/qe, n

]
, p ≤ q < (n− 2)p, (b),

pq, k = n, 0 < q < p, (c).

878

Proof. We first prove that the ordered bounds of Schmidt, Siegel and Srinivasan879

and Boros and Prékopa reduce to the bound in (4.8) in each of the three cases and880

then show that the bound is tight.881

(1) Show reduction of ordered bounds to the bound in (4.8): Let P (n, k, p, q) rep-882

resent the tightest upper bound when n − 1 probabilities are p and one is q. It can883

be observed that the bound in (4.8) is non-trivial for the three instances since:884 (
n−1

2

)
p2(

k−1
2

) =
(n− 1)p(n− 2)p

(k − 1)(k − 2)
< 1,

[since (n− 2)p < (n− 1)p ≤ 1 and k ≥ 3 for cases (a) and (b)],
pq < 1,

[since q < p < 1 for case (c)].

885

It is easy to verify that the ordered Schmidt, Siegel and Srinivasan bound in (3.1)886

reduces to the bound in (4.8) for a specific parameter r2 in each of the three cases:887

(4.9)
r2 = 1, cases (a) and (b),
r2 = n− 2, case (c).

888

It can be similarly verified that the ordered Boros and Prékopa bound in (3.2) reduces889

to the bound in (4.8) with the following parameters r and i in each of the three cases:890

(4.10)
r = 1, i = 0, cases (a) and (b),
r = n− 2, i = 0, case (c).

891

The effectiveness of ordering is demonstrated by (4.9) and (4.10) in that the ordered892

bounds of Schmidt, Siegel and Srinivasan and Boros and Prékopa correspond to r > 0893

while their unordered counterparts in (1.4) and (1.7) correspond to r = 0 (considering894

all n variables). The unordered bounds are thus strictly weaker than the ordered895

bounds which in turn are tight as proved in the next step.896

(2) Prove tightness of the bound in (4.8) by constructing extremal distributions:897
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Consider the linear program to compute P (n, k, p, q) which can be written as:898

(4.11)

P (n, k, p, q) = max
∑

c∈{0,1}n:
∑
t ct≥k

θ(c)

s.t
∑

c∈{0,1}n
θ(c) = 1,∑

c∈{0,1}n:ci=1

θ(c) = p, ∀i ∈ [n− 1],∑
c∈{0,1}n:cn=1

θ(c) = q,∑
c∈{0,1}n:ci=1,cj=1

θ(c) = p2, ∀(i, j) ∈ Kn−1,∑
c∈{0,1}n:ci=1,cn=1

θ(c) = pq, ∀i ∈ [n− 1],

θ(c) ≥ 0, ∀c ∈ {0, 1}n.

899

We now proceed to prove tightness of the bound in (4.8) for each of the three instances900

of the (n, k, p, q) tuple by constructing feasible distributions of (4.11) which attain the901

bound.902

1. P (n, k, p, q) =

(
n−1

2

)
p2(

k−1
2

) (cases (a) and (b)):903

The following distribution attains the tight bound:904

(4.12)
θ(c) =

(1− q)(1− (n− 1)p), if
∑
t∈[n]

ct = 0, (x),

p(1− q), if
∑

t∈[n−1]

ct = 1, cn = 0, (y),

q(1− (n− 1)p) + (n−1)(n−2)p2

(k−1) , if
∑

t∈[n−1]

ct = 0, cn = 1, (z),

p(q − n−2
k−2p), if

∑
t∈[n−1]

ct = 1, cn = 1, (u),

p2

(n−3
k−3)

, if
∑

t∈[n−1]

ct = k − 1, cn = 1, (v).

905

We use symbols x, y, z, u, v to denote the probability of the associated sce-906

narios in (4.12). The constraints in (4.11) reduce to:907 (
n−2
k−2

)
v + u+ y = p(

n−1
k−1

)
v + (n− 1)u+ z = q(

n−3
k−3

)
v = p2(

n−2
k−2

)
v + u = pq

x+ y + z + u+ v = 1,

908

and using x, y, z, u, v from (4.12), it can be easily verified that all of the above909

constraints are satisfied. The non-negativity constraints for y, v are satisfied910

while x ≥ 0, z ≥ 0 is satisfied since (n − 1)p ≤ 1. Remaining case is u, for911
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which we have:912

case (a): u = p(q − n−2
k−2p)

≥ p(q − n−2
3−2 p)

[since k ≥ 3]
= p(q − (n− 2)p)

[since q > (n− 2)p]
≥ 0

case (b): u = p(q − n−2
k−2p)

≥ p(q − k−2
k−2q)

[since k ≥ 2 + (n− 2)p/q]
= 0.

913

The only support points contributing to the objective function are the first914

set of
(
n−1
k−1

)
scenarios, and so we have P (n, k, p, q) =

(
n−1
k−1

)
p2/
(
n−3
k−3

)
=915 (

n−1
2

)
p2/
(
k−1

2

)
.916

2. P (n, k, p, q) = pq (case (c)):917

The following distribution attains the tight bound pq:918

(4.13)

θ(c) =



(1− p)(1− (n− 2)p− q), if
∑
t∈[n]

ct = 0, (x),

p(1− p), if
∑

t∈[n−1]

ct = 1, cn = 0, (y),

q(1− p), if
∑

t∈[n−1]

ct = 0, cn = 1, (z),

p(p− q), if
∑

t∈[n−1]

ct = n− 1, cn = 0, (u),

pq, if
∑
t∈[n]

ct = n, (v).

919

The constraints in (4.11) reduce to:920

y + u+ v = p
z + v = q
u+ v = p2

v = pq
x+ y + z + u+ v = 1,

921

and using x, y, z, u, v from (4.13), it can be easily verified that all of the922

above constraints are satisfied. The non-negativity contraints for y, z, u, v are923

satisfied by 0 < q ≤ p ≤ 1 while for x, we have:924

x = (1− p)(1− (n− 2)p− q)
≥ (1− p)(1− (n− 2)p− p)

[since q < p]
= (1− p)(1− (n− 1)p)
≥ 0

[since (n− 1)p ≤ 1].

925

The distribution in (4.13) attains the bound pq.926
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We have thus constructed two feasible probability distributions in (4.12) and (4.13)927

which attain the bound in (4.8) in each of the three instances defined by the (n, k, p, q)928

tuple. Hence the parameters r2, r in (4.9) and (4.10) defined for each of the three929

cases must be the minimizers which exactly reduce the ordered bounds in (3.1) and930

(3.2) to the tight bound in (4.8).931

Example 4.6. This example demonstrates the usefulness of Proposition 4.5 when932

n = 100 and p = 0.01 where (n − 1)p ≤ 1. It compares the tight bounds computed933

from (4.8) with the unordered bounds of Schmidt, Siegel and Srinivasan from (1.4)934

and that of Boros and Prékopa from (1.7).

(a) q = 0.99, q ≥ (n− 2)p, k ≥ 3 (b) q = 0.1, p ≤ q < (n− 2)p, k ≥ 12

Fig. 6: Comparison of unordered bounds with tight bound when n = 100, p = 0.01

935
Figure 6a plots the two unordered bounds along with the tight bound when q =936

0.99 (case (a) of Proposition 4.5), where the tight bound is valid for all k in [3, n],937

while Figure 6b compares the bounds when q = 0.1 (case (b) of Proposition 4.5) for938

k ≥ 12 as the tight bound is valid when k ≥ d2 + (n − 2)p/qe = d11.8e = 12. The939

unordered Boros and Prékopa bound is much tighter than the unordered Schmidt,940

Siegel and Srinivasan bound in both figures. Hence, Figure 6 demonstrates that with941

ordering, the relative improvement of the Schmidt, Siegel and Srinivasan bound is942

much better than that of the Boros and Prékopa bound although both the ordered943

bounds reduce to the tight bound in (4.8).944

5. Conclusion. In this paper we have provided results towards finding tight945

probability bounds for the sum of n pairwise independent random variables adding946

up to at least an integer k. In Section 2, we first established with Lemma 2.1 that a947

feasible correlated distribution of a Bernoulli random vector c̃ with an arbitrary uni-948

variate probability vector p ∈ [0, 1]n and transformed bivariate probabilities pipj/p949

where maxi pi ≤ p ≤ 1, always exists (this result was then extended to prove the exis-950

tence of an alternate correlated Bernoulli random vector in Corollary 2.2). Theorem951

2.3 then established that with pairwise independence, the Hunter [28] and Worsley952

[59] bound is tight for any p ∈ [0, 1]n, which, to the best of our knowledge, has not953

been shown thus far in the literature dedicated to this topic. In fact, paraphrasing954

from Boros [7] (Section 1.2), “As far as we know, in spite of the several studies dedi-955

cated to this problem, the complexity status of this problem, for feasible input, seems956

to be still open even for bivariate probabilities”. With pairwise independent random957

variables, feasibility is guaranteed and Theorem 2.3 shows that the tightest upper958

bound is computable in polynomial time (in fact in a simple closed-form), thus pro-959

viding a partial positive answer towards this question. The proof included the explicit960
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construction of an extremal distribution (though not unique) in Table 2, that attains961

this bound. We then showed in Proposition 2.5 that the ratio of the Boole union962

bound and the pairwise independent bound is upper bounded by 4/3 and that this963

bound is attained. Applications of the result in correlation gap analysis and bottle-964

neck optimization (in the distributionally robust optimization context) were discussed965

in examples 2.6 and 2.7. The tight upper bound on the union probability was then966

used to derive a closed-form expression for the tight lower bound on the intersection967

probability in Corollary 2.9, which, to the best of our knowledge, appears to be un-968

known in the literature. In Section 3, for k ≥ 2, we proposed new bounds exploiting969

ordering of the probabilities (which are at least as good as the unordered bounds) and970

argued that the ordered Boros and Prékopa bound must be at least as good as the971

other two ordered bounds proposed in Theorem 3.1. To the best of our knowledge,972

this idea of ordering has not been exploited thus far to tighten probability bounds973

for pairwise independent random variables. We then showed in Section 3.2 that the974

ordered bounds can be further tightened by using the tight bound for k = 1 from The-975

orem 2.3. Numerical examples in Section 3.3 then demonstrated that while the Boros976

and Prékopa bound is uniformly the best performing of the three ordered bounds,977

the Schmidt, Siegel and Srinivasan bound shows the best improvement with ordering,978

in the examples considered. Section 4 provided instances when the unordered and979

ordered bounds are tight. In Section 4.1, for the special case of identical probabilities980

p ∈ [0, 1] and any k ∈ [n], we used a constructive proof exploiting the symmetry in the981

problem, to identify the best upper bound P (n, k, p) in closed-form and a correspond-982

ing extremal distribution. This result was further extended to provide tight bounds983

(not necessarily closed-form) for more general t-wise independent identical variables984

in Corollary 4.2. We then demonstrated the usefulness of this result by identifying985

instances when the existing unordered bounds are tight. Section 4.2 demonstrated986

the usefulness of the ordered bounds by identifying an instance with n − 1 identical987

probabilities (along with additional conditions on the identical probability and k),988

when the ordered bounds are tight.989

We believe several interesting research questions arise from this work, two of which990

we list below:991

(a) To the best of our knowledge, the computational complexity of evaluating (or992

approximating) the bound P (n, k,p) for general n, k and p ∈ [0, 1]n is still unre-993

solved. While we provide the answer in closed-form for k = 1, a natural question994

that arises is whether the tight bounds for general k ≥ 2 with pairwise indepen-995

dent random variables are efficiently computable (or efficient to approximate)?996

We leave this for future research.997

(b) The upper bound of 4/3 in Section 2.2 is derived for the ratio between the998

maximum probability for the union of arbitrarily dependent events and the999

probability of the union of pairwise independent events. We conjecture this1000

upper bound is valid for the expected value of all non-decreasing, nonnegative1001

submodular functions (of which the probability of the union is a special case)1002

and leave it as an open question.1003
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[48] A. Prékopa, Sharp bounds on probabilities using linear programming, Operations Research,1102
38 (1990), pp. 227–239.1103
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