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Abstract
Optimization under uncertainty as an area of research has seen remarkable progress

over the past few decades, under the headings of stochastic programming, robust and
distributionally robust optimization. Duality in its various forms has been at the heart
of these advances. This dissertation addresses two classes of problems at the interface
of optimization and uncertainty which harness the power of linear and conic duality.
Firstly, we focus on distributional uncertainty where the goal is to find the best possible
bounds on tail probability and expected value functions of sums of Bernoulli random
variables, attained by an extremal probability distribution from a set of distributions
consistent with the given marginal probability and correlation information. We pri-
marily consider two types of correlation structure among the variables, i.e., pairwise
independence (where the variables are uncorrelated) and extremal dependence (where
the correlation between the variables is unknown). The tail probability function we
consider is the right tail or the probability of occurrence of at least k out of n Bernoulli
events, where k ∈ [0, n] is an integer while the expected value function is the expected
value of a stop-loss type function.

For pairwise independent variables, while some useful bounds on the tail proba-
bility function have been proposed in the literature, none of these bounds are tight in
general. We provide several results towards finding tight probability bounds for this
class of problems. When the individual and bivariate probabilities are known, even
verifying if a joint distribution consistent with the given information exists, is known
to be an NP-complete problem. Surprisingly however, we show that it is possible to
capture the tightest upper bound on the probability of the union of n pairwise inde-
pendent events (k = 1) in a closed-form expression for any input marginal probability
vector p ∈ [0, 1]n. The proof involves showing the existence of a positively correlated
Bernoulli random vector for any p ∈ [0, 1]n, which is of independent interest in itself,
since feasibility is typically not guaranteed for arbitrary correlation structures. Applica-
tions in correlation gap analysis, where pairwise independence provides better bounds
(than extremal dependence) in some instances are discussed. For two random vari-
ables, we show that the correlation gap is upper bounded by 4/3 for any non-negative,
non-decreasing, submodular function. We also prove that the Bonferroni lower bounds
on the union of pairwise independent events are tight for small probabilities. Secondly,
for k ≥ 2 and any input marginal probability vector p ∈ [0, 1]n, new upper bounds are
derived exploiting ordering of probabilities. Numerical examples are provided to illus-
trate when the bounds provide significant improvement over existing bounds. Thirdly,
while the existing and new bounds are not always tight, we provide special instances
when they are shown to be tight. Specifically, when the marginals are identical, we
show that for any k ∈ [0, n], the bound derived in Boros and Prékopa (1989) is always
tight and this result can be easily extended to identical t-wise independent variables.
Further, we identify conditions under which this result provides useful small deviation
bounds while other existing bounds are trivial. For the expected stop-loss function, in
the special case when all the pairwise independent variables are identical, we provide
an alternative proof to derive the tightest bound in a known closed-form expression,
along with extremal distributions that attain the bound.

With extremal dependence, we show that the tightest bounds on a weighted tail
probability function can be computed as the optimal value of a compact linear program.
Useful applications in a limited dependency system where only some of the variables are
extremally dependent while the rest are mutually independent and these two sets of



iv

variables are independent of each other are explored. As a special case of the weighted
tail probability function, we derive an earlier known closed-form bound (Rüger, 1978)
on the probability that at least k out of n Bernoulli events occur. The usefulness of the
closed-form bounds is subsequently demonstrated in solving star-shaped marginal sys-
tems. The results from the Bernoulli case are extended to derive useful upper bounds
on the tail probability function of sums of random variables with discrete support. Nu-
merical illustrations show that these bounds are tight in many randomly generated in-
stances with identical and non-identical probabilities. For expected stop-loss functions,
we prove that the comonotonic distribution attains the tightest upper bound while the
Jensen (1906) bound is the tightest lower bound by similarly deriving a compact linear
program.
cWe propose an alternative model inspired by the principle of satisficing but based on a
constraint function that evaluates to the optimal objective value of a standard conic op-
timization problem, that can be used to model a wide range of constraint functions that
are convex in the decision variables but can be either convex or concave in the uncer-
tain parameters. As a result, our model provides a unifying framework that generalizes
and encompasses a wide variety of similar problems considered in recent papers. We
derive an exact semidefinite optimization formulation when the constraint is biconvex
quadratic with quadratic penalty and the support set is ellipsoidal. For more general
conic uncertain problems with polyhedral support sets and penalty functions, we show
the equivalence between the robust satisficing problems and the classical adaptive ro-
bust linear optimization models with conic uncertainty sets, where the latter can be
solved approximately using affine recourse adaptation. More importantly, under the
stated assumptions, we show that the exact reformulation and safe approximations do
not lead to infeasible problems if the chosen target is above the optimum objective of
the nominal problem. For the special case of a non-negative orthant cone, we prove
that despite being simpler, the affine recourse approximation of the dual reformulation
is closer to the original problem when compared to a specific non-affine recourse ap-
proximation of the original problem itself. Finally, we extend our framework to the
data-driven setting and showcase the modeling and the computational benefits of the
robust satisficing framework over classical robust optimization with three numerical
examples: growth optimal portfolio selection, log-sum-exp optimization and adaptive
lot-sizing problem.

Keywords: Bernoulli random variables, tail probability, tight bounds, pairwise inde-
pendence, extremal dependence, linear programming, linear duality, bivariate feasibil-
ity, correlation gap, small deviation bounds, submodular functions, expected stop-loss
functions, robust optimization, robust satisficing, biconvex constraints, conic optimiza-
tion, conic duality, affine recourse adaptation, data-driven optimization
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Symbols and Description , Part I
The following tables are meant to be quick reference for the symbols used in this dissertation. The symbols along with their

interpretation will be clearly defined as and when encountered in their specific context.

Description Symbol Expression/Interpretation

Set of real numbers R R = (−∞, ∞)

Set of integers and positive integers Z, Z+ Z = {. . . ,−1, 0, 1, . . . }, Z+ = {1, 2, . . . }

Set of rational numbers Q Q = {p/q | p, q ∈ Z, q 6= 0}

Floor and ceiling functions bxc, dxe bxc = {y ∈ Z | y ≤ x < y + 1}, dxe = {y ∈ Z | y − 1 < x ≤ y}

Positive and fractional part of a real
number x+, {x} x+ = max(x, 0), x ∈ R, {x} = x− bxc, x ∈ R

Binomial coefficient
(
r

s

) (
r

s

)
=

r!

(s!(r − s)!) , r ≥ s ≥ 0, r, s ∈ Z+

Number of random variables n n ∈ Z+

Running index [n] {1, 2, . . . , n}

Closed interval of integers [i, j] [i, j] = {i, i+ 1, . . . , j − 1, j}, i, j ∈ Z+, i < j

Set of pairwise indices Kn Kn = {(i, j) : 1 ≤ i < j ≤ n}

Indicator Function 1A 1A(x) =

{
1, if x ∈ A
0, otherwise

Random vector c̃ c̃ = (c̃i) , i ∈ [n]

Sum of random variables ξ̃ ξ̃ =
∑n
i=1 c̃i

Number of support points (discrete) m c̃i ∈ {0, 1, . . . ,m− 1}, ∀i ∈ [n]

Set of realizations of c C, Cd C = {0, 1}n, Cd = {0, 1, 2, . . . ,m− 1}n

Univariate marginal vector p p = (pi) , i ∈ [n]

Bivariate Marginals pij pij = P (c̃i = 1, c̃j = 1), (i, j) ∈ Kn

Univariate ambiguity set Θu Θu =
{
θ ({0, 1}n) : Pθ (c̃i = 1) = pi, ∀i ∈ [n]

}
Pairwise independence

ambiguity set Θpw
Θpw =

{
θ ({0, 1}n) : Pθ (c̃i = 1, c̃j = 1) = pipj∀(i, j) ∈ Kn,

Pθ (c̃i = 1) = pi, ∀i ∈ [n]
}

Discrete variables
ambiguity set Θd

Θd =
{
θ({0, 1, . . . ,m− 1}n) :

Pθ (c̃i = j) = pij , i ∈ [n], j ∈ [0,m− 1]
}

Extremal tail probability
and expectation upper bounds

(lower bounds denoted with P , E)

Pu(n, k,p), Eu(n, k,p)

(univariate)

Pu(n, k,p) = max
θ∈Θu

Pθ(
∑n
i=1 c̃i ≥ k), k ∈ [n]

Eu(n, k,p) = max
θ∈Θu

Eθ
[(∑n

j=1 c̃j − k
)+
]
, k ∈ [n]

P (n, k,p), E(n, k,p)

(pairwise independence)

P (n, k,p) = max
θ∈Θpw

Pθ(
∑n
i=1 c̃i ≥ k), k ∈ [n]

E(n, k,p) = max
θ∈Θpw

Eθ
[(∑n

j=1 c̃j − k
)+
]
, k ∈ [n]

Extremal weighted
tail probability bounds

Puw(n,w,p)
w = (wi), wi ∈ R, ∀i ∈ [n]

Puw(n,w,p) = max
θ∈Θu

∑n
l=0 wlPθ(

∑n
i=1 c̃i = l)

Extremal discrete variables
tail probability bounds (univariate)

P d(n, k,p) P d(n, k,p) = maxθ∈Θd Pθ(
∑n
i=1 c̃i ≥ k), k ∈ [n(m− 1)]

Multilinear polynomials Sj(c), j ∈ [n] Sj(c) =
∑

1≤i1<i2<...<ij≤n

ci1ci2 . . . cij

Binomial Moments Sr, r ≤ n Sr = E [Sr(c)]

First and second partial binomial
moments

(pairwise independence)
S1r, S2r

S1r =
∑n−r
i=1 pi, r ∈ [0, n− 1],

S2r =
∑

(i,j)∈Kn−r
pipj , r ∈ [0, n− 2],

0 ≤ p1 ≤ p2 ≤ . . . ≤ pn ≤ 1



xiv

Symbols and Description , Part II

Description Symbol Expression / Interpretation

Set of non-negative and strictly
positive reals R+, R++

R+ = {x | x ∈ R, x ≥ 0}
R++ = {x | x ∈ R, x > 0}

Space of n dimensional reals Rn Rn = {(x1, x2, . . . , xn)) | xi ∈ R, ∀i ∈ [n]}

Set of m× n real matrices Rm×n A ∈ Rm×n iff A = [aij ], aij ∈ R, ∀i ∈ [m], ∀j ∈ [n]

Set of positive semidefinite matrices Sn+ Sn+ = {M ∈ Sn |M � 0}, where Sn = {A ∈ Rn×n | A = A>}

Vector of zeros and ones
(of appropriate dimension) 0, 1 0 = (0, 0, . . . , 0)>, 1 = (1, 1, . . . , 1)>

Identity matrix In In =
{
A ∈ Rn×n | Aij = 1i=j , ∀i, j ∈ [n]

}
Proper cone K K = {x ∈ Rn | x ∈ K =⇒ λx ∈ K, ∀λ ≥ 0}

Dual cone K? K? = {y ∈ Rn | y>x ≥ 0, ∀x ∈ K}

Conic inequality By �K v By − v ∈ K

Superscript indexing wi, Ai ith vector (matrix) among a countable set of
vectors (matrices) {wi}, {Ai}

Subscript indexing Ai ith row of a matrixA

Dual norm ‖ · ‖? ‖x‖? = sup‖y‖≤1 x
>y

Compact and convex sets X , Z, P
Feasible set (decision variables) :X ⊆ Rnx ,

Uncertainty support set :Z ⊆ Rnz

Dual uncertainty support set :P ⊆ Rnh

Decision variables vector x x ∈ X

Uncertain parameter vector z z ∈ Z

Dual uncertain parameter ρ ρ ∈ P

Penalty function p(z) p(z) : Rn 7→ R+

Uncertainty set of radius r Ur Ur = {z ∈ Z | p(z − ẑ) ≤ r}

Polyhedral uncertainty set Z Z = {z ∈ Rnz |Hz ≤ h}, H ∈ Rnh×nz , h ∈ Rnh+

Robust satisficing parameter k k ∈ R+

Target τ τ > Z0

Deterministic nominal value ẑ ẑ ∈ Z

Conic representable function g(x,z)

g(x,z) = min d>y

s.t. By �K f(x) + F (x)z

y ∈ Rny ,

f : Rnx 7→ Rnf , F : Rnx 7→ Rnf×nz

Recourse matrix B B : Rnf 7→ Rny

Recourse variable y y ∈ Rny

Dual recourse variables β,µ, η β ∈ Rnh+ , µ ∈ Rnµ , η ∈ R

Nominal optimal objective Z0

Z0 = min c>x

s.t. g(x, ẑ) ≤ 0

x ∈ X

Robust optimal objective Zr

Zr = min c>x

s.t. g(x,z) ≤ 0 ∀z ∈ Ur,
x ∈ X

Family of functions Rm,n Rm,n = {y | y : Rm 7→ Rn}

Class of affine recourse functions Lm,n Lm,n =
{
y ∈ Rm,n

∣∣ ∃π ∈ Rn,Π ∈ Rn×m : y(z) = π + Πz
}
.
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Chapter 1

Introduction

1.1 Origins of linear programming and optimization under un-
certainty

Operations research as a scientific discipline has contributed immensely to a holistic
understanding of the mathematics behind optimization. What began as a wartime ini-
tiative to facilitate military planning and logistics has today expanded to include so-
phisticated mathematical models that address problems of a vast variety of industries
in the civilian sector. The tremendous progress over the past half century and more
has made a remarkable impact on society by finding applications in sectors ranging
from oil refineries to insurance and banking to civil aviation. Traditionally, operations
research has been concerned with optimization techniques that help determine opti-
mal solutions to some real-world objective function while satisfying a given set of con-
straints. While breakthroughs in linear programming happened in the 1940

′
s with the

development of the simplex algorithm by George Dantzig (also attributed to Leonid
Kantorovich1), subsequent efforts focused on more complex constraints and objectives
which led to the development of integer, quadratic, second-order cone, semidefinite,
geometric, conic and non-convex programming techniques. While classical optimiza-
tion methods were developed to solve deterministic planning problems, stochastic
models independently evolved to address problems involving uncertainty. More re-
cently, over the past few decades, an integrated approach combining optimization with
uncertainty has gained huge traction under the headings of stochastic programming,
robust and distributionally robust optimization. In the words of George Dantzig, who
is considered to be the father of linear optimization, “Planning under uncertainty. This,
I feel, is the real field we should all be working on”2. Given the ubiquitous presence of
uncertainty in real-world optimization problems, this unified approach is more practi-
cal, yet poses new computational challenges due to the increased complexity.

1.2 Role of uncertainty and duality in this dissertation

This dissertation broadly discusses two classes of problems at the intersection of opti-
mization and uncertainty. Part I focuses on distributional uncertainty where the goal
is to find the best possible bounds on functions of sums of random variables, attained
by an extremal probability distribution from a set of distributions consistent with the
given marginal probability information. Sums of random variables are part of a larger

1https://www.informs.org/Explore/History-of-O.R.-Excellence/Biographical-Profiles/Kantorovich-
Leonid-V

2https://www.informs.org/Explore/History-of-O.R.-Excellence/Biographical-Profiles/Dantzig-
George-B#oral

https://www.informs.org/Explore/History-of-O.R.-Excellence/Biographical-Profiles/Kantorovich-Leonid-V
https://www.informs.org/Explore/History-of-O.R.-Excellence/Biographical-Profiles/Kantorovich-Leonid-V
https://www.informs.org/Explore/History-of-O.R.-Excellence/Biographical-Profiles/Dantzig-George-B#oral
https://www.informs.org/Explore/History-of-O.R.-Excellence/Biographical-Profiles/Dantzig-George-B#oral
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class of problems considered in the literature which involve optimizing linear func-
tions of random variables over a given feasible region (Natarajan, 2021). Within this
subclass, Bernoulli random variables are a special case which is the focus of the major-
ity of this work. Part II deals with robust uncertainty where the uncertain parameters
of the optimization problem vary within a prescribed support set and their probabil-
ity distribution is assumed to be unknown. The key intention is to achieve an ideal
combination of flexibility and tractability by which the models considered can accom-
modate a broad class of robust optimization problems considered in the literature and
yet provide efficiently computable optimal solutions or approximations, where “effi-
cient computability” refers to polynomial time solvability in the input representation.

At the heart of all these optimization techniques is the concept of duality whose
discovery, in the context of linear programming, is attributed to John von Neumann
by George Dantzig himself 3. Rigorous proofs were subsequently provided by Karush
(1939) and Kuhn and Tucker (1951) with extensions to convex non-linear programming.
The theory of linear duality suggests that for any given linear optimization problem,
there exists another optimization problem in a different dimension which attains the
same optimal objective function value, if it exists. Theoretical advances in non-linear
optimization have given rise to more general versions of duality such as conic du-
ality. While even a finite dimensional optimization problem in its primal form may
be intractable (where tractability refers to polynomial time solvability using current
available solvers) due to a large number of variables or constraints, the dual program,
which reverses the number of variables and constraints may help reformulate the orig-
inal problem to provide efficiently computable solutions or at the very least provide
bounds on the objective function value while offering deeper insights into the structure
of the problem responsible for the hardness. It would not be an exaggeration to say that
the concept of duality has and continues to help address many challenging problems
in mathematical optimization such as the assignment, shortest-path, max flow-min cut
problems or existence of equilibria in zero-sum games to mention a few.

This dissertation also demonstrates the power of harnessing duality in providing
efficiently computable solutions to otherwise challenging uncertain optimization prob-
lems. Part I of the dissertation consisting of Chapters 2 and 3 exploits linear duality
to solve uncertain linear programs. More specifically, we consider computing tight
bounds on tail probability and expected stop-loss functions of sums of Bernoulli ran-
dom variables as the optimal value of a compact linear program. “Tight” here refers
to a bound that is always attained by a joint probability distribution consistent with
the given input information, i.e., marginal probabilities and correlation, while “tail”
refers to the right tail or the probability that at least k out of n variables are one, where
k ∈ [0, n] is an integer. One of the crucial factors that affects tractability of such bounds
is the dependence structure among the variables. Assuming that the variables are mu-
tually independent has been the predominant assumption in the literature, in part due
to the convenience it affords in not requiring additional information about the joint
probabilities. However, this is often not practical, since, in reality, the variables are
likely to be correlated to varying degrees. For example, the individual risks in an in-
surance portfolio would not typically exhibit independence since they are influenced
by common economic or environmental factors such as recessions or pandemics. At
the other end of the spectrum, we have extremally dependent variables where the
only information available is the univariate marginal probabilities, i.e., no information

3Reminiscences About the Origins of Linear Programming (Dantzig, 1982)

https://link.springer.com/content/pdf/10.1007/978-3-642-68874-4_4.pdf
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about the correlation structure is specified. Introducing a small degree of independence
into the extremally dependent model gives rise to pairwise independence, which is a
weaker notion of complete independence, although pairwise independent variables are
also uncorrelated like mutually independent variables. Our focus in Part I is to com-
pute bounds on functions of sums of pairwise independent and extremally dependent
variables, which are referred to as the pairwise independent and univariate bounds re-
spectively throughout the dissertation.

Firstly, in Chapter 2, we consider pairwise independent variables which admit low
cardinality joint distributions. Despite this advantage, computing bounds on the tail
probability and expected value functions appears to be computationally challenging,
even though formal hardness results, to the best of our knowledge, have not been es-
tablished in the literature. The hardness in the problem primarily appears to stem
from the quadratic nature of the constraints in the dual separation problem, which
does not seem to admit compact reformulations as in the univariate case. Interest-
ingly however, in some special cases, such as when the union probability is considered
or when the variables are identical, we prove that the best bounds can be computed
in closed-form by leveraging standard linear programming and duality theory, while
in more general cases, new improved bounds are derived by suitable construction of
dual feasible solutions. While some of these bounds are previously established in the
literature, their tightness with pairwise independent variables does not appear to be
known. Additionally, in the earlier mentioned special cases, our proof deploys a con-
structive approach, wherein we explicitly provide the extremal distributions that at-
tain the closed-form bounds. With tail probability bounds, useful applications such
as correlation gap analysis show that pairwise independence can improve the gap (as
compared to the univariate bounds) with bounds derived from mutual independence.
For two random variables, we show that the correlation gap is upper bounded by 4/3
for any non-negative, non-decreasing, submodular function and that the bound is at-
tained. Applications in analysis of small deviation bounds show that with Bernoulli
variables, pairwise independence is sufficent to generate non-trivial bounds in contrast
to more general random variables where 4-wise independence is known to be neces-
sary. All these results and their extensions are the direct outcome of exploiting linear
duality.

Next, in Chapter 3, we consider similar bounds for extremally dependent variables,
where only the univariate marginal probabilities are known. Due to fewer restrictions,
this class of problems offer more flexibility than the pairwise independent class and are
thus amenable to tractable reformulations. While the number of primal variables in the
large-sized linear program formulation that computes this bound grows exponentially
in the input size, we prove the polynomial-time solvability of the dual separation prob-
lem (which is an integer linear program) by suitably leveraging duality to transform it
into a compact linear program with an integer polytope. The equivalence of separation
and optimization (Grötschel, Lovász, and Schrijver, 2012) then shows that the origi-
nal optimization problem is efficiently solvable. This result is then extended to derive
tight bounds on more general weighted tail probability functions as the optimal value
of a compact linear program. These bounds find application in useful settings such as
limited dependency, where some of the variables are extremally dependent while the rest
are mutually independent. In special cases, these compact linear program formulations
admit closed-form solutions. While some of these closed-form bounds are well known,
we not only provide alternative optimization-based proofs of these results, but the de-
rived compact linear programs employ far less constraints and decision variables than
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existing compact formulations.
In Part II of this dissertation, we address conic uncertain problems with quadratic

and polyhedral uncertainty sets in the context of a recently proposed framework known
as robust satisficing (Long, Sim, and Zhou, 2021), where nature can adversarially chose
the uncertain parameters from a pre-defined support set. Instead of sizing the uncer-
tainty set as in robust optimization, the robust satisficing model is specified by a target
objective with the aim of delivering a solution that is least impacted by uncertainty
while achieving the target. At the heart of this framework, we minimize the level of
constraint violation under all possible realizations within the support set, where the
constraint function evaluates to the optimal objective value of a standard conic opti-
mization problem and the violation is proportional to a pre-specified convex penalty
function. The optimization model thus considered is very generic and encompasses
a wide range of constraints including those convex in both the decision variables and
the uncertain parameters, that cannot be handled by classical robust optimization tech-
niques. With quadratic constraints, uncertainty support and penalty function, we de-
rive an exact semidefinite program formulation. For more general conic uncertain
problems with polyhedral support sets and penalty functions such exact reformula-
tions may not be available. Conic duality once again plays a critical role in overcoming
this challenge, albeit with necessary complete recourse assumptions. By successive du-
alization over the wait-and-see decisions and uncertain parameters, the original conic
optimization problem is transformed into a classical adaptive robust linear program
with a conic uncertainty set. This equivalent problem can not only be efficiently ap-
proximated using affine recourse adaptation, but also admits trivial feasible solutions.
Unlike the primal problem where the structure of the feasible solution is difficult to as-
certain, the dual reformulation always admits a feasible solution in which the recourse
variables are affine functions of the uncertain parameters. Three numerical examples of
growth optimal portfolio selection, log-sum-exp optimization and adaptive lot-sizing
demonstrate the improved performance of the robust satisficing framework over clas-
sical robust optimization. Specifically, the lot-sizing numerical example demonstrates
that with the non-negative orthant cone, the dual formulation shows a remarkable im-
provement in computational speed over the primal model. Thus, the dual formulation
provides tractability, feasibility and computational benefits over the original primal prob-
lem.

1.3 Summary and contributions

In summary, this dissertation addresses uncertain optimization problems by harness-
ing the power of linear and conic duality to:

i) Derive compact linear programming formulations that employ less constraints and
decision variables than existing compact formulations to compute bounds on tail prob-
ability and expected stop-loss functions of sums of random variables.

ii) Derive tight bounds on such functions in a closed-form expression where possible.

iii) Demonstrate the usefulness of the derived tight bounds with interesting applica-
tions.

iv) Construct extremal distributions that attain these tight bounds in special cases.
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v) Derive improved bounds on such functions when the tight bounds are not com-
putable using existing techniques.

vi) Illustrate the improved performance of these bounds over existing bounds with
numerical examples.

vii) Provide tractability, feasibility and computational advantages over classical robust
models for conic optimization problems.

viii) Provide better affine recourse approximations to two-stage adaptive linear op-
timization problems than specific non-affine recourse approximations of the original
problem.

1.4 Dissertation structure

The presentation structure of this dissertation is as follows:

• Each part broadly covers themes under the banner of optimization under uncer-
tainty.

• Every chapter in a part covers topics in line with the part theme, under specific as-
sumptions on the input information to the problem.

• In every chapter, the most important results are segregated into sections while nu-
merical illustrations and extensions are provided in sub-sections.

• At the beginning of each section, we provide a brief high-level introduction and lit-
erature survey of the topic being covered. Additionally, in Part I, after each result is
presented, we provide a more detailed literature survey in a “Connection to earlier
work" segment. This serves to guide the reader to more specific references related
to the particular result derived, with alternative proofs or applications, after reading
through the derived proofs.

• Symbols and notations are defined as and when necessary throughout the document
and kept unique to retain their interpretation to the extent possible. In case of over-
lap, the interpretation will be clear from the specific context in which they are used.

• Dense equations, tables and figures are sometimes intentionally scaled to extend be-
yond the page margins so as to allow for easy readability and clarity of view.

• All proofs but one are provided in the main body of the dissertation. The appendix
contains a single but lengthy proof of a result in Chapter 2. When similar ideas from
earlier proofs are used, the proof or a part of it is omitted for the sake of brevity.

• References in the bibliography section are categorized chapter-wise and alphabeti-
cally ordered within each category.

• All numerical results in Part I were obtained using Gurobi 9.1.1 solver with Python
3.7.7 while the results in Part II were obtained using Mosek 9.2.38 together with
YALMIP modeling language (Löfberg, 2004) and MATLAB R2020a, Gurobi 9.1.1
with RSOME (Robust Stochastic Optimization Made Easy) modeling language (Chen,
Sim, and Xiong, 2020) and Python 3.7.7. All experiments were conducted on an Intel
Core i7 2.7GHz MacBook with 16GB of RAM.
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Part I

Bounds with Distributional
Uncertainty
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Chapter 2

Bounds with Pairwise Independence

Computing probability bounds on the occurrence of at least k of a finite number of
Bernoulli events {E1, E2, ..., En}, given their individual probabilities of occurrence, lies
at the intersection of probability theory, computer science, financial risk management,
reliability systems, stochastic programming and other allied topics and has thus re-
ceived considerable attention from several authors across the spectrum over the past
two centuries. We note that the problem can be expressed as finding probability bounds
on Bernoulli random variables ci, i ∈ [n] adding up to at least a threshold k where
ci = 1Ei (1 being the indicator function) and k ∈ [n]. Specifically, when k = 1, the
problem of finding bounds on the probability of the union of n events has been exten-
sively studied in the literature and popularly referred to as the union bounds.

In this chapter, our focus is on computing tail probability bounds on sums of pair-
wise independent Bernoulli random variables. Unlike with mutually independent
Bernoulli variables, where the tail probability is efficiently computable using the Pois-
son Binomial distribution, efficient computation of extremal tail probability bounds for
pairwise independent Bernoulli variables remains an open question, even though pair-
wise independence is a weaker notion of mutual independence. This chapter provides
partial answers to this question by showing that in special cases such as when the union
probability is considered or when the marginals are identical, the tightest bound can be
captured in a closed-form expression. Other than these special cases, improved bounds
exploiting ordering of the probabilities are derived in this chapter. Sections 2.1 - 2.4.2 in
this chapter are primarily derived from our paper Ramachandra and Natarajan (2021),
while the subsequent sections provide auxiliary results and generalizations of some
results in these sections.

2.1 Motivation

It is well known that while mutually independent random variables are pairwise in-
dependent, the reverse is not true. Feller (1968) attributes Bernstein (1946) with iden-
tifying one of the earliest examples with n = 3 random variables which are pairwise
independent, but not mutually independent. For general n, constructions of pairwise
independent Bernoulli random variables can be found in the works of Geisser and
Mantel (1962), Karloff and Mansour (1994), and Koller and Meggido (1994), pairwise
independent discrete random variables in Feller (1959), Lancaster (1965), Joffe (1974),
and O’Brien (1980) and pairwise independent normal random variables in Geisser and
Mantel (1962). One of the motivations for studying constructions of pairwise inde-
pendent random variables particularly in the computer science community is that the
joint distribution can have a low cardinality support (polynomial in the number of ran-
dom variables) in comparison to mutually independent random variables (exponential
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in the number of random variables). The reader is referred to Lancaster (1965) and
more recent papers of Babai (2013) and Gavinsky and Pudlák (2016) who have devel-
oped lower bounds on the entropy of the joint distribution of pairwise independent
random variables which are shown to grow logarithmically with the number of ran-
dom variables. The low cardinality of these distributions have important ramifications
in efficiently derandomizing algorithms for NP-hard combinatorial optimization prob-
lems (see the review article of Luby and Widgerson, 2005, and the references therein
for results on pairwise independent and more generally t-wise independent random
variables).

Preliminaries:
Given an integer n ≥ 2, denote by [n], the set of indices {1, 2, . . . , n} and by Kn =
{(i, j) : 1 ≤ i < j ≤ n}, the set of all pairwise indices in [n] (it can be viewed as a
complete graph on n nodes). Given integers i < j, let [i, j] = {i, i + 1, . . . , j − 1, j}.
Consider a Bernoulli random vector c̃ = (c̃1, . . . , c̃n) with marginal probabilities given
by pi = P(c̃i = 1) for i ∈ [n]. Denote by p = (p1, . . . , pn) ∈ [0, 1]n, the univariate
marginal vector, by C = {0, 1}n, the set of realizations of c̃ and by Θ({0, 1}n), the set of
all probability distributions supported on C. Consider the set of joint probability distri-
butions of Bernoulli random variables consistent with the given marginal probabilities
and pairwise independence:

Θpw =
{
θ ∈ Θ({0, 1}n)

∣∣∣ Pθ (c̃i = 1) = pi, ∀i ∈ [n], Pθ (c̃i = 1, c̃j = 1) = pipj , ∀(i, j) ∈ Kn

}
This set of distributions is clearly nonempty for any p ∈ [0, 1]n, since the mutually
independent distribution lies in the set. Our problem of interest is to compute the
maximum probability that n random variables add up to at least an integer k ∈ [n]
for distributions in this set. Denote the tightest upper bound by P (n, k,p) (observe
that the bivariate probabilities here are simply given by the product of the univariate
probabilities). Then,

P (n, k,p) = max
θ∈Θpw

Pθ

(
n∑
i=1

c̃i ≥ k

)
(2.1)

Two useful upper bounds that have been proposed for this problem are the following:
(a) Chebyshev (1867) bound: The one-sided version of the Chebyshev tail probability

bound for any random variable uses only the mean and variance of the random
variable. Since the Bernoulli random variables are assumed to be pairwise inde-
pendent or equivalently uncorrelated, the variance of the sum is given by:

Variance

(
n∑
i=1

c̃i

)
=

n∑
i=1

pi(1− pi).
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Applying the classical Chebyshev bound then gives an upper bound:

P (n, k,p) ≤


1, k <

n∑
i=1

pi,

n∑
i=1

pi(1− pi)/

(
n∑
i=1

pi(1− pi) + (k −
n∑
i=1

pi)
2

)
,

n∑
i=1

pi ≤ k ≤ n.

(2.2)
(b) Schmidt, Siegel, and Srinivasan (1995) bound: The Schmidt, Siegel and Srinivasan

bound is derived by bounding the tail probability using the moments of mul-
tilinear polynomials. This is in contrast to the Chernoff-Hoeffding bound (see
Chernoff, 1952; Hoeffding, 1963) which bounds the tail probability of the sum of
independent random variables using the moment generating function. A multi-
linear polynomial of degree j in n variables is defined as:

Sj(c) =
∑

1≤i1<i2<...<ij≤n

ci1ci2 . . . cij .

At the crux of their analysis is the observation that all the higher moments of the
sum of Bernoulli random variables can be generated from linear combinations
of the expected values of multilinear polynomials of the random variables. The
construction of the bound makes use of the equality:(∑

i∈[n] ci

j

)
= Sj(c), ∀c ∈ C,∀j ∈ [0, n], (2.3)

where S0(c) = 1 and
(
r
s

)
= r!/(s!(r − s)!) for any pair of integers r ≥ s ≥ 0. The

bound derived in Schmidt, Siegel, and Srinivasan (1995) (see Theorem 7, part (II)
on page 239) for pairwise independent random variables is given by1:

P (n, k,p) ≤ min

(
1,

∑
i∈[n] pi

k
,

∑
(i,j)∈Kn pipj(

k
2

) )
. (2.4)

While both the Chebyshev’s bound and the Schmidt, Siegel, Srinivasan bound in
(2.2) and (2.4) have been shown to be useful and are easy to use, neither of them is
tight for general values of n, k and p ∈ [0, 1]n, although in special cases they can be
shown to be tight. In this chapter, we work towards identifying instances for pairwise
independent random variables when these bounds can be tightened (Section 2.3) or
shown to be tight (see Section 2.4.1).

2.1.1 Other related bounds

Consider the set of joint probability distributions of Bernoulli random variables consis-
tent with the marginal probability vector p ∈ [0, 1]n and general bivariate probabilities
given by pij = P(c̃i = 1, c̃j = 1) for (i, j) ∈ Kn:

Θb =
{
θ ∈ Θ({0, 1}n)

∣∣∣ Pθ (c̃i = 1) = pi, ∀i ∈ [n], Pθ (c̃i = 1, c̃j = 1) = pij , ∀(i, j) ∈ Kn

}
1While the statement in the theorem in Schmidt, Siegel, and Srinivasan (1995) is for k >

∑
i pi, it is

straightforward to see that their analysis would lead to the form here for general k.
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Unlike the pairwise independent case, verifying if this set of distributions is nonempty
is already known to be a NP-complete problem (see Pitowsky, 1991). The tightest upper
bound on the probability for distributions in this set is given by maxθ∈Θb Pθ (

∑n
i=1 c̃i ≥ k)

where the bound is set to −∞ if the set of feasible distributions is empty. The bound is
given by the optimal value of the linear program (see Hailperin, 1965a):

max
∑

c∈C:
∑
t ct≥k

P(c)

s.t.
∑

c∈C:ci=1

P(c) = pi, ∀i ∈ [n],

∑
c∈C:ci=1,cj=1

P(c) = pij , ∀(i, j) ∈ Kn,

∑
c∈C

P(c) = 1,

P(c) ≥ 0, ∀c ∈ C

(2.5)

where the decision variables are the joint probabilities P(c) = P(c̃ = c) for all c ∈ C.
The number of decision variables in this formulation, however, grows exponentially in
the number of random variables n. The dual linear program is given by:

min
∑

(i,j)∈Kn

λijpij +
n∑
i=1

λipi + λ0

s.t.
∑

(i,j)∈Kn

λijcicj +

n∑
i=1

λici + λ0 ≥ 0, ∀c ∈ C,

∑
(i,j)∈Kn

λijcicj +
n∑
i=1

λici + λ0 ≥ 1, ∀c ∈ C :
∑

t ct ≥ k.

(2.6)

The dual linear program in (2.6) has a polynomial number of decision variables, expo-
nential number of constraints and is always feasible (set λ0 = 1 and remaining dual
variables to be zero). Strong duality thus holds. Given the large size of the primal and
dual linear programs, two main approaches to tackle these problems have been studied
in the literature:

i) The first approach is to find closed-form bounds by generating dual feasible solu-
tions as illustrated in Kounias (1968), Kounias and Marin (1976), Sathe, Pradhan, and
Shah (1980), Móri and Székely (1985), Dawson and Sankoff (1967), Galambos (1975)
and Galambos (1977), Caen (1997), Kuai, Alajaji, and Takahara (2000), Dohmen and
Tittmann (2007) and related graph-based bounds in Hunter (1976), Worsley (1982),
Veneziani (2008a), Vizvári (2007). These bounds have shown to be tight in special in-
stances (see Section 2.2.2 for examples).

ii) The second approach is to try and reduce the size of the linear programs using re-
laxations and to solve it numerically. Since the primal linear program in (2.5) quickly
becomes intractable with an increase in the number of random variables n, many pa-
pers adopting this approach, aggregate the primal decision variables, thus obtaining
weaker bounds as a trade-off for the reduced size. Formulations of linear programs
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under assumptions of partially or fully aggregated univariate, bivariate or m-variate
information for 2 ≤ m < n have been proposed in Kwerel (1975b), Platz (1985), Prékopa
(1988) and Prékopa (1990a), Boros and Prékopa (1989), Prékopa and Gao (2005), Qiu,
Ahmed, and Dey (2016), Yang, Alajaji, and Takahara (2016), Yoda and Prékopa (2016).
Techniques to solve the dual formulations by restricting the dual variables have been
similarly been studied (see Boros et al., 2014).

Using the second approach, in some cases, closed-form bounds have been derived
for the aggregated linear programs. One such bound which is of particular relevance
to this chapter is constructed in Boros and Prékopa (1989) by identifying dual feasible
bases and using optimality conditions when the first and second binomial moments
are known. The tightest upper bound on P(ξ̃ ≥ k) is derived by considering all distri-
butions ω of a integer random variable ξ̃ (supported on [0, n]), which are assumed to lie
in a set of distributions is given by:{

ω([0, n])
∣∣∣ Eω [( ξ̃

j

)]
= Sj , j = 1, 2

}
.

Setting ξ̃ =
∑

i c̃i with S1 = E[S1(c̃)] and S2 = E[S2(c̃)], the upper bound is a closed-
form expression as follows:

P

(
n∑
i=1

c̃i ≥ k

)
≤



1, k <
(n− 1)S1 − 2S2

n− S1

(k + n− 1)S1 − 2S2

kn
,

(n− 1)S1 − 2S2

n− S1
≤ k < 1 +

2S2

S1

(i− 1)(i− 2S1) + 2S2

(k − i)2 + (k − i)
, k ≥ 1 +

2S2

S1
, i =

⌈
(k − 1)S1 − 2S2

k − S1

⌉
,

(2.7)
where the ceiling function dxemaps x to the smallest integer greater than or equal to x.
Similar to the Chebyshev’s bound and the Schmidt, Siegel, Srinivasan bound, the Boros
and Prekopa bound in (2.7) is not generally tight when the input marginals are known
as in (2.1), since it is constructed with aggregated binomial moment information. In
the rest of this chapter, we will refer to the three bounds in (2.2), (2.4) and (2.7) as the
(a) Chebyshev, (b) Schmidt, Siegel and Srinivasan and (c) Boros and Prekopa bound
respectively.

To the best of our knowledge, the connection of these bounds which assume gen-
eral bivariate information with tight bounds for pairwise independent random vari-
ables have not been well-studied in the literature. Another upper bound derived un-
der weaker assumptions is the Boole (1854) (see also Fréchet, 1935) union bound (k =
1) which is valid with extremal dependence among the Bernoulli random variables.
Boole’s union bound is given as:

P u(n, 1,p) = max
θ∈Θu

Pθ

(
n∑
i=1

c̃i ≥ 1

)
= min

(
n∑
i=1

pi, 1

)
, (2.8)

where Θu is the set of joint distributions supported on C while consistent with the given
univariate information defined as:

Θu = {θ ∈ Θ({0, 1}n) : Pθ (c̃i = 1) = pi, ∀i ∈ [n]} .
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Clearly, P (n, 1,p) ≤ P u(n, 1,p). Extensions of this bound for k ≥ 2 is provided in
Rüger (1978).

2.1.2 Contributions and structure

This brings us to the key contributions and the structure of the current chapter:
(a) In Section 2.2, we first establish (see Lemma 1) that a positively correlated Bernoulli

random vector c̃with arbitrary univariate probability vector p ∈ [0, 1]n and trans-
formed bivariate probabilities pipj/p where p ∈ [maxi pi, 1], always exists. This
feasibility problem is of independent interest in itself, since feasibility is typically
not guaranteed for arbitrary correlation structures with Bernoulli random vectors.

(b) We then provide the tightest upper bound on the probability on the union of n
pairwise independent events P (n, 1,p) in closed form (see Theorem 2). The con-
tributions of Theorem 2 lie in:

i) Establishing that when the random variables are pairwise independent, for any
given marginal vector p ∈ [0, 1]n, the upper bound proposed in Hunter (1976) and
Worsley (1982) is tight using techniques from linear optimization. These bounds
were initially developed for the sum of dependent Bernoulli random variables
with arbitrary bivariate probabilities (using tree structures from graph theory)
and are not in general guaranteed to be tight (see Example 1 in Section 2.2.2). In-
terestingly for pairwise independent random variables, we prove that this bound
is indeed tight by using the feasibility result from Lemma 1.

ii) Building on the result (see Proposition 1), we show that the ratio of Boole’s union
bound and the pairwise independent bound is upper bounded by 4/3 and this
is attained. Applications of the result in correlation gap analysis for a specific
non-decreasing, non-negative, submodular set function are discussed.

(c) In Section 2.3, we focus on k ≥ 2 and for general probabilities p ∈ [0, 1]n, we
present new bounds exploiting the ordering of probabilities (see Theorem 3). These
bounds improve on the existing closed-form bounds mentioned in Section 2.1 and
numerical examples are provided to quantify the improvement of the ordered
bounds over existing bounds.

(d) In Section 2.4, we provide instances when the existing closed-form and new or-
dered bounds are tight:

i) First, we identify a special case when the existing closed-form bounds can be
shown to be tight. When the marginals of the pairwise independent Bernoulli
random variables are identical, in Section 2.4.1, we provide the tightest upper
bound in closed form (see Theorem 4) for any k ∈ [n]. The proof is based on
showing an equivalence with a linear programming formulation of an aggregated
moment bound for which closed-form solutions have been derived by Boros and
Prékopa (1989). While the tight closed-form bound is more complicated than
the closed-form Chebyshev bound in (2.2) and the Schmidt, Siegel, Srinivasan
bound in (2.4), it helps us identify conditions under which these relatively simpler
bounds are guaranteed to be tight (see Proposition 2).

ii) Second, when n − 1 marginal probabilities are identical, Proposition 3 provides
instances when the new ordered bounds proposed in Section 2.3 are tight. The
usefulness of the ordered bounds is illustrated with a numerical example.



Chapter 2. Bounds with Pairwise Independence 13

(e) In Section 2.6, we show that the Bonferroni (1936) lower bound is tight for tail
probability bounds on sums of pairwise independent Bernoulli variables with
small probabilities.

(f) In Section 2.5, the results from Section 2.2.3 are generalized to show that, with
n = 2 random variables (when pairwise independence is equivalent to mutual
independence), the upper bound on the correlation gap can be improved from
e/(e − 1) to 4/3 for any non-decreasing, non-negative, submodular set function
and this bound is attained. On the other hand, we show that the correlation gap
can be arbitrarily large with supermodular set functions under similar assump-
tions.

(g) Section 2.7 provides three additional results for identical pairwise independent
variables. Firstly, in Section 2.7.1, we show that with identical marginals, the tight-
ness of the Boros and Prekopa bounds proved in Section 2.4.1 can be extended
to more general t-wise independent Bernoulli variables by solving a polynomial-
sized aggregate linear program. Next, in Section 2.7.2, we identify instances when
the Boros and Prekopa bound (which is always tight with identical marginals),
provides non-trivial small deviation bounds while the Chebyshev and Schmidt,
Siegel, Srinivasan bounds are trivial. Lastly, in Section 2.7.3, we provide tight

upper and lower bounds on the expected stop-loss function E
[(∑n

j=1 c̃j − k
)+
]

(earlier considered in Section 3.4 in the context of univariates) for identical pair-
wise independent variables.

(h) Finally, in Section 3.5, we summarize the results derived in Part I of this disserta-
tion and identify some future research questions.

2.2 Tight upper bound for k = 1

The goal of this section is to provide the tightest upper bound on the probability of
the union of pairwise independent events. Towards this, we start by generating the
following feasible solution to the dual linear program in (2.6) where k = 1, pij = pipj
and the probabilities are sorted in increasing value as 0 ≤ p1 ≤ p2 ≤ . . . ≤ pn ≤ 1:

λ0 = 0, λi = 1 ∀i ∈ [n], λin = −1 ∀i ∈ [n− 1] and λij = 0 otherwise.

The left hand side of the dual constraints in (2.6) simplifies to:

∑
(i,j)∈Kn

λijcicj +

n∑
i=1

λici + λ0 = −
n−1∑
i=1

cicn +

n∑
i=1

ci

= cn +
n−1∑
i=1

ci(1− cn).

To verify that this solution is dual feasible, observe that with all ci = 0, cn+
∑n−1

i=1 ci(1−
cn) = 0. When cn = 1, regardless of the values of c1, . . . , cn−1, we have cn+

∑n−1
i=1 ci(1−

cn) = 1. Lastly, when cn = 0 and at least one ci = 1 for i ∈ [n − 1], we have
cn +

∑n−1
i=1 ci(1 − cn) ≥ 1. This gives a dual feasible solution with the objective value∑n

i=1 pi − pn
(∑n−1

i=1 pi

)
. Another dual feasible solution for the linear program is given
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by:
λ0 = 1, λi = 0 ∀i ∈ [n], λij = 0 ∀(i, j) ∈ Kn,

with a dual objective of 1. From weak duality, we then have:

P (n, 1,p) ≤ min

(
n∑
i=1

pi − pn

(
n−1∑
i=1

pi

)
, 1

)
.

It is useful to note that while this bound has been derived in Kounias (1968), it has not
been shown to be tight for general bivariate probabilities. A simple construction of an
extremal distribution that attains this bound appears to be tricky. The key result we
show is that there is always a feasible distribution which attains this upper bound. The
proof of tightness involves showing that this problem can be transformed to proving
the existence of a distribution of a Bernoulli random vector c̃with univariate probabil-
ities P(c̃i = 1) = pi and transformed bivariate probabilities P(c̃i = 1, c̃j = 1) = pipj/pn,
where pn is the largest univariate probability. In the following lemma, we prove that a
more general version of such a correlated distribution always exists.

2.2.1 Bivariate feasibility with positively correlated Bernoulli variables

Lemma 1. Given a univariate probability vector p ∈ [0, 1]n and bivariate probabilities pipj/p
where p ∈ [maxi pi, 1], a Bernoulli random vector c̃ consistent with the given univariate and
bivariate probabilities always exists.

Proof. Sort the probabilities in increasing value as 0 ≤ p1 ≤ p2 ≤ . . . ≤ pn ≤ 1. We want
to prove that there always exists a distribution θ ∈ Θb such that∑

c∈{0,1}n
P(c) = 1,

∑
c∈{0,1}n:ci=1

P(c) = pi, ∀i ∈ [n],

∑
c∈{0,1}n:ci=1,cj=1

P(c) = pij , ∀(i, j) ∈ Kn

(2.9)

where pij = pipj/p and p ∈ [pn, 1]. The proof is divided into two parts.
(i) We first argue that it is sufficient to verify the existence of probabilities P(c) for n

Bernoulli random variables such that:∑
c∈{0,1}n

P(c) = 1,

∑
c∈{0,1}n:ci=1

P(c) = pi, ∀i ∈ [n],

∑
c∈{0,1}n:ci=1,cj=1

P(c) =
pipj
pn

, ∀(i, j) ∈ Kn,

(2.10)
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where the bivariate probabilities are modified from pipj/p to pipj/pn. To see this,
since 1 ≤ 1/p ≤ 1/pn, it is always possible to find a λ ∈ [0, 1] such that:

1

p
= λ

1

pn
+ (1− λ)(1).

Then, consider a convex combination two distributions θ, θ as follows:

θ = λθ + (1− λ)θ,

where θ is a probability distribution which satisfies (2.10) and θ is a pairwise inde-
pendent joint distribution on n Bernoulli random variables with univariate prob-
abilities given by pi and bivariate probabilities given by pipj . The distribution θ
always exists (simply choose the mutually independent distribution on n random
variables with univariate probabilities pi) while we will prove the existence of θ in
the next part of the proof. The convex combination above guarantees the existence
of a distribution θ which satisfies (2.9).

(ii) Next, to show that (2.10) is feasible, by conditioning on cn = 1, we use the fact
that there exists a feasible distribution on n − 1 Bernoulli random variables with
probabilities Pn−1(c) = P(c̃ = c) for all c ∈ {0, 1}n−1 such that:∑

c∈{0,1}n−1

Pn−1(c) = 1,

∑
c∈{0,1}n−1:ci=1

Pn−1(c) =
pi
pn
, ∀i ∈ [n− 1],

∑
c∈{0,1}n−1:ci=1,cj=1

Pn−1(c) =
pipj
p2
n

, ∀(i, j) ∈ Kn−1.

(2.11)

Such a pairwise independent joint distribution θn−1 on n − 1 random variables
specified by (2.11) with univariate probabilities given by pi/pn and bivariate prob-
abilities given by (pi/pn)(pj/pn) always exists (simply choose the mutually in-
dependent distribution on n − 1 random variables with univariate probabilities
pi/pn). Then, by assigning a probability of 1− pn to the vector of all zeros (c = 0)
and scaling the probabilities when cn = 1, we obtain a feasible distribution satis-
fying (2.10) as seen in the construction of Table 2.1.

Scenarios c1 c2 . . . cn Probability

2n−1 scenarios


0 0 . . . 0 P(c) = 1− pn
1 0 . . . 0 0
...

...
...
...

1 . . . 1 0

2n−1 scenarios


0 0 . . . 1 P(c) = pnPn−1(c)
...

...
...

1 1 1 P(c) = pnPn−1(c)

TABLE 2.1: Probabilities of the scenarios to create a feasible distribution in (2.10).

This completes the proof by showing the existence of the distribution θ.
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We note that Lemma 1 proves feasibility for positively correlated Bernoulli random
variables. Feasibility is typically not guaranteed for arbitrary correlation structures
with Bernoulli random vectors. While there are several results on finding specific cor-
relation structures which are compatible with given Bernoulli random variables and
simulating from these distributions (see Chaganty and Joe, 2006; Qaqish, 2003; Emrich
and Piedmonte, 1991; Lunn and Davies, 1998), this result appears to be unknown to
the best of our knowledge, and hence significant in itself. This brings us to the first
theorem, which provides the tightest upper bound on the probability of the union of n
pairwise independent events using Lemma 1.

Theorem 2. Sort the probabilities in increasing value as 0 ≤ p1 ≤ p2 ≤ . . . ≤ pn ≤ 1. Then,

P (n, 1,p) = min

(
n∑
i=1

pi − pn

(
n−1∑
i=1

pi

)
, 1

)
. (2.12)

Proof. When pij = pipj and k = 1, the optimal value of the primal linear program
in (2.5) is clearly bounded since feasibility is guaranteed and the objective function
is a probability value. The optimality conditions of linear programming states that
{P(c); c ∈ C} is primal optimal and {λij ; (i, j) ∈ Kn, λi; i ∈ [n], λ0} is dual optimal
if and only if they satisfy: (i) the primal feasibility conditions in (2.5), (ii) the dual
feasibility conditions in (2.6) and (iii) the complementary slackness conditions given
by:  ∑

(i,j)∈Kn

λijcicj +

n∑
i=1

λici + λ0

P(c) = 0, ∀c ∈ C :
∑

t ct = 0,

 ∑
(i,j)∈Kn

λijcicj +
n∑
i=1

λici + λ0 − 1

P(c) = 0, ∀c ∈ C :
∑

t ct ≥ 1.

(2.13)

1) Proof of tightness of non-trivial bound in (2.12)
We now show that P (n, 1,p) =

∑n
i=1 pi − pn

(∑n−1
i=1 pi

)
which is the non-trivial part of

the upper bound in (2.12) when
∑n−1

i=1 pi ≤ 1.

Step (1a): Show tightness by constructing a pairwise independent distribution
We verify the tightness of the bound, by showing there exists a primal solution
(feasible distribution) which satisfies the complementary slackness conditions.
Towards this, observe that from the complementary slackness condition in (2.13):

∀c ∈ C :

n−1∑
t=1

ct ≥ 2, cn = 0, we have

(
cn +

n−1∑
i=1

ci(1− cn)− 1

)
> 0 =⇒ P(c) = 0.

This forces a total of 2n−1−n scenarios to have zero probability. Building on this,
we set the probabilities of the 2n possible scenarios of c̃ as shown in Table 2.2.
The probability of the vector of all zeros (one scenario) is set to 1 −

∑n
i=1 pi +

pn

(∑n−1
i=1 pi

)
. To match the bivariate probabilities P(c̃i = 1, c̃n = 0) = pi(1− pn),

we have to then set the probability of the scenario where ci = 1, cn = 0 and all
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remaining cj = 0 to pi(1 − pn). This corresponds to the n − 1 scenarios in Table
2.2. Hence, to ensure feasibility of the distribution, we need to show that there

Scenarios c1 c2 . . . cn−1 cn Probability

1 scenario 0 0 . . . 0 0 1−
∑n

i=1 pi + pn

(∑n−1
i=1 pi

)
n− 1 scenarios


1 0 . . . 0 0 p1(1− pn)
0 1 . . . 0 0 p2(1− pn)
...

...
...

...
0 . . . 1 0 pn−1(1− pn)

2n−1 − n scenarios


1 1 . . . 0 0 0
...

...
... 0 0

1 1 1 0 0

2n−1 scenarios


0 0 . . . 0 1 P(c)
...

...
... 1

1 1 1 1 P(c)

TABLE 2.2: Probabilities of scenarios where the probabilities of the last 2n−1 scenarios
need to be determined.

exist non-negative values of P(c) for the last 2n−1 scenarios such that:∑
c∈C:cn=1

P(c) = pn,

∑
c∈C:ci=1,cn=1

P(c) = pipn, ∀i ∈ [n− 1],

∑
c∈C:ci=1,cj=1,cn=1

P(c) = pipj , ∀(i, j) ∈ Kn−1.

or equivalently, by conditioning on cn = 1, we need to show that there exists non-
negative joint probabilities Pn−1(c) where Pn−1(c) = P(c̃ = c) for all c ∈ {0, 1}n−1

such that: ∑
c∈{0,1}n−1

Pn−1(c) = 1,

∑
c∈{0,1}n−1:ci=1

Pn−1(c) = pi, ∀i ∈ [n− 1],

∑
c∈{0,1}n−1:ci=1,cj=1

Pn−1(c) =
pipj
pn

, ∀(i, j) ∈ Kn−1,

(2.14)

This corresponds to verifying the existence of a probability distribution on n − 1
Bernoulli random variables with univariate probabilities pi and bivariate proba-
bilities pipj/pn where pn ≥ pn−1 ≥ pn−2 ≥ . . . ≥ p1. Observe, that in (2.14), the
univariate probabilities remain the same but the random variables are no longer
pairwise independent. In the next step of the proof, we show that such a distri-
bution always exists.
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Step (1b): Show there exists a distribution that satisfies (2.14)
We make use of the Lemma 1 to prove that 2.14 is always satisfied. By considering
n− 1 variables instead of n and setting p = pn ≥ maxi∈[n−1] pi, it is to easy to see
from Lemma 1 that there exists a distribution which satisfies (2.14).
An outline of the different distributions used in the construction in steps (1a) and
Lemma 1 is shown in Figure 2.1.

(pi, pipj)

n dimensions

(
pi,

pipj
pn

)
n-1 dimensions

(pi, pipj)

n-1 dimensions

(
pi,

pipj
pn−1

)
n-1 dimensions

(
pi
pn−1

,
pipj
p2n−1

)
n-2 dimensions

FIGURE 2.1: Construction of the pairwise independent extremal distribution

This completes the proof for the case where
∑n−1

i=1 pi ≤ 1 and the non-trivial tight
bound is given by:

P (n, 1,p) =
n∑
i=1

pi − pn

(
n−1∑
i=1

pi

)
.

2) Proof of the tightness of trivial part of the bound in (2.12)
To complete the proof, consider the case with

∑n−1
i=1 pi > 1. Then, there exists an index

t ∈ [2, n − 1] such that
∑t−1

i=1 pi ≤ 1 and
∑t

i=1 pi > 1. Let δ = 1 −
∑t−1

i=1 pi. Clearly
0 ≤ δ < pt. From steps (1)-(2) in the proof of the non-trivial bound, we know that there
exists a distribution for t + 1 pairwise independent random variables with marginal
probabilities p1, p2, . . . , pt−1, δ, pt+1 such that the probability of the sum of the random
variables being at least one is equal to one (since the sum of the first t probabilities in
this case is equal to one). By increasing the marginal probability δ to pt, we can only in-
crease this probability. Hence, there exists a distribution for t+ 1 pairwise independent
random variables with probabilities 0 ≤ p1 ≤ p2 ≤ . . . ≤ pt ≤ pt+1 ≤ 1 such that there
is a zero probability of these random variables to simultaneously take a value of 0. We
can generate the remaining random variables c̃t+2, . . . , c̃n independently with marginal
probabilities pt+2, . . . , pn. This provides a feasible distribution that attains the bound of
one, thus completing the proof.
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2.2.2 Connection of Theorem 2 to existing results

The problem of bounding the probability that the sum of Bernoulli random variables is
at least one has been extensively studied in the literature, under knowledge of general
bivariate probabilities. Let Ai denote the event that c̃i = 1 for each i, then, k = 1 simply
corresponds to bounding the probability of the union of events. When the marginal
probabilities pi = P(Ai) for i ∈ [n] and bivariate probabilities pij = P(Ai ∩ Aj) for
(i, j) ∈ Kn are given, Hunter (1976) and Worsley (1982) derived the following bound
by optimizing over the spanning trees τ ∈ T :

P(∪iAi) ≤
n∑
i=1

pi −max
τ∈T

∑
(i,j)∈τ

pij , (2.15)

where T is the set of all spanning trees on the complete graph with n nodes (where the
edge weights are given by pij). A special case of the Hunter (1976) bound was derived
by Kounias (1968) as:

P(∪iAi) ≤
n∑
i=1

pi −max
j∈[n]

∑
i 6=j

pij , (2.16)

which subtracts the maximum weight of a star spanning tree on the complete graph
from the sum of the marginal probabilities

∑
i pi. Tree bounds have been shown to be

tight, in some special cases as outlined below:

i) Zero bivariate probabilities for all pairs (pij = 0, ∀(i, j) ∈ Kn):
When all the probabilities pij are zero, the bound reduces to Boole’s union bound which
is tight.

ii) Zero bivariate probabilities outside a given tree:
Given a tree τ such that the bivariate probabilities pij are zero if and only if the edge
(i, j) /∈ τ , Worsley (1982) proved that the bound is tight (see Veneziani, 2008b, for
related results).

iii) Lower bounds on bivariate probabilities:
Boros et al. (2014) proved that by relaxing the equality of bivariate probabilities to lower
bounds on bivariate probabilities as

P
(
Ai ∩Aj

)
≥ pij , ∀(i, j) ∈ Kn,

the tightest upper bound on the probability of the union is exactly the Hunter (1976)
and Worsley (1982) bound (see Maurer, 1983, for related results).

iv) Pairwise independent variables (Theorem 2 in this chapter):
With pairwise independent random variables where pij = pipj , the maximum weight
spanning trees in (2.15) is exactly the star tree with the root at node n and edges (i, n)
for all i ∈ [n − 1]. In this case, the Kounias (1968), Hunter (1976) and Worsley (1982)
bound reduces to the bound in (2.12) which is shown to be tight in Theorem 2 in this
chapter.

The next example illustrates that with general bivariate probabilities, even if a joint
distribution exists, the Hunter (1976) and Worsley (1982) bound and thus the Kounias
(1968) bound is not guaranteed to be tight.
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Example 1. Consider n = 4 Bernoulli random variables with univariate marginal vector

p = [0.35, 0.19, 0.13, 0.2],

and bivariate probabilities

p12 = 0.001, p13 = 0.022, p14 = 0.03, p23 = 0.017, p24 = 0.018, p34 = 0.019.

It can be verified that a joint distribution with these given univariate and bivariates exists. The
tight upper bound on the probability by solving the linear program (2.5) is given by

max
θ∈Θ(p,pij ;(i,j)∈K4))

Pθ (c̃1 + c̃2 + c̃3 + c̃4 ≥ 1) = 0.784.

Figure 2.2 displays the star spanning tree chosen by the Kounias (1968) bound and spanning
tree chosen by the Hunter (1976) and Worsley (1982) bound. It is clear that none of these
bounds are tight in this given instance. Boros et al. (2014) also provide randomly generated
instances (see Table 1 of Section 4 in their paper) when the Hunter (1976) bound is not tight
though it is the best performing among the upper bounds considered there.
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(b) Hunter (1976)-Worsley (1982)

FIGURE 2.2: Spanning trees with general bivariates

Figure 2.3 demonstrates that with the same set of univariate marginals p = [0.35, 0.19, 0.13, 0.2],
when pairwise independence is enforced, both the Kounias (1968) and Hunter (1976) and Wors-
ley (1982) spanning trees are identical and the bounds in (2.16) and (2.15) equal the tight bound
0.688 (from Theorem 2).
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FIGURE 2.3: All spanning trees with pairwise independence

2.2.3 Comparison with the union bound and correlation gap analysis

The next proposition provides an upper bound on the ratio of Boole’s union bound and
the pairwise independent bound derived from Theorem 2.

Proposition 1. For all p ∈ [0, 1]n, we have:

P u(n, 1,p)

P (n, 1,p)
≤ 4

3
.

The ratio of 4/3 is attained when
∑n−1

i=1 pi = 1/2 and pn = 1/2.

Proof. Assume the probabilities are sorted in increasing values as 0 ≤ p1 ≤ p2 ≤ . . . ≤
pn ≤ 1. It is straightforward to see that if

∑n−1
i=1 pi > 1, both the bounds take the value

P (n, 1,p) = P u(n, 1,p) = 1. Now assume, α =
∑n−1

i=1 pi ≤ 1. The ratio is given as:

P u(n, 1,p)

P (n, 1,p)
=

min (
∑n

i=1 pi, 1)∑n
i=1 pi − pn

(∑n−1
i=1 pi

)
=

min (α+ pn, 1)

α+ pn − αpn
.
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If α+ pn ≤ 1, then we have:

P u(n, 1,p)

P (n, 1,p)
=

α+ pn
α+ pn − αpn

=
1

1− 1
1
α

+ 1
pn

≤ 4

3
.

(2.17)

where the maximum value is attained at α = 1−pn, pn = 1/2, while if α+pn ≥ 1, then
we have:

P u(n, 1,p)

P (n, 1,p)
=

1

α+ pn − αpn

=
1

α(1− pn) + pn

≤ 4

3

(2.18)

where the maximum value is again attained at α = 1 − pn, pn = 1/2. This gives the
bound of 4/3 when pn = 1/2 and α = 1/2.

We now illustrate an application of Theorem 2 and Proposition 1 in comparing
bounds with dependent and independent random variables in correlation gap anal-
ysis.

Example 2 (Correlation gap analysis). The notion of a “correlation gap” was introduced
by Agrawal et al. (2012). It is defined as the ratio of the worst-case expected cost for random
variables with given univariate marginals to the expected cost when the random variables are in-
dependent. When c̃ is a Bernoulli random vector and θind denotes the independent distribution,
the correlation gap is defined there as:

κu(p) = sup
θ∈Θu

Eθ[f(c̃)]

Eθind[f(c̃)]
. (2.19)

A key result in this area is that for any non-negative, non-decreasing, submodular set function,
f(S), the correlation gap is always upper bounded by e/(e − 1) (see Calinescu et al., 2007;
Agrawal et al., 2012). The example constructed in these papers to show this bound is attained
is for the maximum of binary variables:

f(c) = max {ci | i ∈ [n]} .

This defines a non-negative, non-decreasing, submodular set function f(S) which takes a value
zero when S = ∅ and one when S 6= ∅. For a given marginal vector p, the correlation gap in
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(2.19) reduces to

κu(p) =

max
θ∈Θu

Eθ[max (c̃1, c̃2, ..., c̃n)]

1−
∏n
i=1(1− pi)

=

max
θ∈Θu

Pθ (
∑n

i=1 c̃i ≥ 1)

1−
∏n
i=1(1− pi)

=
min (

∑n
i=1 pi, 1)

1−
∏n
i=1(1− pi)

.

(2.20)

We now provide an extension of this definition by considering the ratio of the worst-case ex-
pected cost when the random variables are pairwise independent to the expected cost when the
random variables are independent. This is given as:

κ(p) = sup
θ∈Θpw

Eθ[f(c̃)]

Eθind[f(c̃)]
,

which reduces in this specific case to:

κ(p) =
min

(∑n
i=1 pi − pn

(∑n−1
i=1 pi

)
, 1
)

1−
∏n
i=1(1− pi)

.

Clearly κ(p) ≤ κu(p). We now discuss the behaviour of these two ratios.

i) Worst case analysis:
Assume the marginal probability vector is given by p = (1/n, 1/n, , ...., 1/n). For the indepen-
dent distribution, the probability is given by 1− (1−1/n)n, while Boole’s union bound is equal
to one (attained by the distribution which assigns probability 1/n to each of n support points
with ci = 1, cj = 0,∀j 6= i (for each i ∈ [n]) and zero otherwise). In this case the limit of the
ratio as n goes to infinity is given by:

lim
n→∞

κu(p) =
1

1− (1− 1/n)n
→ e

e− 1
≈ 1.5819.

Likewise it is easy to verify that with pairwise independence:

lim
n→∞

κ(p) =
1− 1

n

(
1− 1

n

)
1− (1− 1/n)n

=
e

e− 1
≈ 1.5819.

Thus in the worst-case, both these bounds attain the ratio e/(e− 1).

ii) Instances where correlation gap can be improved:
On the other hand, Proposition 1 illustrates that for the probabilities pn = 1/2 and

∑n−1
i=1 pi =

1/2, the pairwise independent bound is 3/4 and Boole’s union bound is one. For example with
n = 2 where p = (1/2, 1/2), Boole’s union bound is one, while both the pairwise indepen-
dent and the independent probabilities are equal to 3/4. Then, we have κu((1/2, 1/2)) = 4/3
while κ((1/2, 1/2)) = 1. Thus in specific instances, the correlation gap can be tightened by
considering pairwise independent random variables.
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2.3 Improved bounds with non-identical marginals for k ≥ 2

In the previous section, we resolved the question of the tightest bound on the prob-
ability of the union of n pairwise independent events. We now shift attention to the
more general case of at least two or more pairwise independent events occurring. With
an arbitrary input marginal vector p, deriving tight bounds appears to be challeng-
ing. However, we exploit the ordering of probabilities with pairwise independence
to provide new upper bounds that are essentially feasible solutions to the dual linear
program in (2.6). These bounds use the fact that in addition to the Boros and Prekopa
bound in (2.7), the Chebyshev bound and Schmidt, Siegel, Srinivasan bound in (2.2)
and (2.4) can be expressed in terms of the first two aggregated (or equivalently bino-
mial) moments for the sum of pairwise independent random variables, S1 =

∑
i pi and

S2 =
∑

(i,j)∈Kn pipj . The new ordered bounds improve on the three existing closed-
form bounds in (2.2), (2.4) and (2.7), which we will refer to as unordered bounds for the
rest of the chapter. The next theorem provides new probability bounds for the sum of
pairwise independent random variables with possibly non-identical marginals when
k ≥ 2.

Theorem 3. Sort the input probabilities in increasing order as p1 ≤ p2 ≤ . . . ≤ pn. Define
the partial binomial moment S1r =

∑n−r
i=1 pi for r ∈ [0, n− 1] and S2r =

∑
(i,j)∈Kn−r pipj for

r ∈ [0, n− 2].
(a) The ordered Schmidt, Siegel and Srinivasan bound is a valid upper bound on P (n, k,p):

P (n, k,p) ≤ min

(
1, min

0≤r1≤k−1

(
S1r1

k − r1

)
, min

0≤r2≤k−2

(
S2r2(
k−r2

2

))) , ∀k ∈ [2, n],

= min

(
1, min

0≤r1≤k−1

(∑n−r1
i=1 pi
k − r1

)
, min

0≤r2≤k−2

(∑
(i,j)∈Kn−r2

pipj(
k−r2

2

) ))
, ∀k ∈ [2, n].

(2.21)
(b) The ordered Boros and Prekopa bound is a valid upper bound on P (n, k,p):

P (n, k,p) ≤ min
0≤r≤k−1

BP (n− r, k − r,p), ∀k ∈ [2, n], (2.22)

where:

BP (n− r, k − r,p) =



1, k <
(n− r − 1)S1r − 2S2r

n− r − S1r
+ r,

(k − r + n− r − 1)S1r − 2S2r

(k − r)(n− r)
,

(n− r − 1)S1r − 2S2r

n− r − S1r
+ r ≤ k < 1 +

2S2r

S1r
+ r,

(i− 1)(i− 2S1r) + 2S2r

(k − r − i)2 + (k − r − i)
, k ≥ 1 +

2S2r

S1r
+ r, i =

⌈
(k − r − 1)S1r − 2S2r

k − r − S1r

⌉
(c) The ordered Chebyshev bound is a valid upper bound on P (n, k,p):

P (n, k,p) ≤ min
0≤r≤k−1

CH(n− r, k − r,p), ∀k ∈ [2, n], (2.23)
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where:

CH(n− r, k − r, p) =

1, k < S1r + r,

S1r − (S2
1r − 2S2r)

S1r − (S2
1r − 2S2r) + (k − r − S1r)2

, S1r + r ≤ k ≤ n.

Proof.
(a) We observe that for any 0 ≤ r1 ≤ k − 1 and any subset S ⊆ [n] of the random

variables of cardinality n− r1, an upper bound is given as:

P

(
n∑
i=1

c̃i ≥ k

)
≤ P

(∑
i∈S

c̃i ≥ k − r1

)
[since

∑n
i=1 ci ≥ k for c ∈ C implies

∑
i∈S ci ≥ k − r1 for c ∈ C]

≤
E
[∑

i∈S c̃i
]

k − r1

[using Markov’s inequality]

=

∑
i∈S pi

k − r1
.

The tightest upper bound of this form is obtained by minimizing over all 0 ≤ r1 ≤
k − 1 and subsets S ⊆ [n] with |S| = n− r1, which gives:

P

(
n∑
i=1

c̃i ≥ k

)
≤ min

0≤r1≤k−1
min

S:|S|=n−r1

∑
i∈S pi

k − r1

= min
0≤r1≤k−1

∑n−r1
i=1 pi
k − r1

[using the n− r1 smallest probabilities].

(2.24)

We derive the next term in (2.21) using a similar approach while accounting for
pairwise independence. For any 0 ≤ r2 ≤ k − 2 and any subset S ⊆ [n] of the
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random variables of cardinality n− r2, an upper bound is given by:

P

(
n∑
i=1

c̃i ≥ k

)
≤ P

(∑
i∈S

c̃i ≥ k − r2

)

= P
((∑

i∈S c̃i
2

)
≥
(
k − r2

2

))

≤
E
[∑

i∈S
∑

j∈S:j>i c̃ic̃j

]
(
k−r2

2

)
[using equation (2.3) and Markov’s inequality]

=

∑
i∈S
∑

j∈S:j>i E[c̃i]E[c̃j ](
k−r2

2

)
[using pairwise independence]

=

∑
i∈S
∑

j∈S:j>i pipj(
k−r2

2

) .

The tightest upper bound of this form is obtained by minimizing over 0 ≤ r2 ≤
k − 2 and all sets S of size n− r2. This gives:

P

(
n∑
i=1

c̃i ≥ k

)
≤ min

0≤r2≤k−2
min

S:|S|=n−r2

∑
i∈S
∑

j∈S:j>i pipj(
k−r2

2

)
= min

0≤r2≤k−2

(∑
(i,j)∈Kn−r2

pipj(
k−r2

2

) )
[using the n− r2 smallest probabilities].

(2.25)

From the bounds (2.24) and (2.25), we get:

P (n, k,p) ≤ min

(
1, min

0≤r1≤k−1

(
S1r1

k − r1

)
, min

0≤r2≤k−2

(
S2r2(
k−r2

2

))) , ∀k ∈ [2, n]

where S1r1 =
∑n−r1

i=1 pi for r1 ∈ [0, n − 1] and S2r2 =
∑

(i,j)∈Kn−r2
pipj for r2 ∈

[0, n− 2]. It is straightforward to see that this approach is essentially creating a set
of dual feasible solutions and picking the best among it. The dual formulation is:

P (n, k,p) = min
∑

(i,j)∈Kn

λijpipj +
n∑
i=1

λipi + λ0

s.t.
∑

(i,j)∈Kn

λijcicj +
n∑
i=1

λici + λ0 ≥ 0 ∀c ∈ C

∑
(i,j)∈Kn

λijcicj +
n∑
i=1

λici + λ0 ≥ 1, ∀c ∈ C :
∑

t ct ≥ k.

Each component of the second term is obtained by choosing dual feasible solu-
tions with λi = 1/(k − r1) for i ∈ [n− r1] and setting all other dual variables to 0.
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Similarly, each component of the third term is obtained by choosing dual feasible
solutions with λij = 1/

(
k−r2

2

)
for (i, j) ∈ Kn−r2 and setting all other dual variables

to 0.
(b) The bound in (2.22) is obtained by using the inequality:

P

(
n∑
i=1

c̃i ≥ k

)
≤ P

(
n−r∑
i=1

c̃i ≥ k − r

)
, ∀r ∈ [0, k − 1].

Then, we compute an upper bound on P
(∑n−r

i=1 c̃i ≥ k − r
)

by using the aggre-
gated moments S1r and S2r with the Boros and Prekopa bound from (2.7) as fol-
lows:

BP (n− r, k − r,p) =



1, k <
(n− r − 1)S1r − 2S2r

n− r − S1r
+ r

(k − r + n− r − 1)S1r − 2S2r

(k − r)(n− r)
,

(n− r − 1)S1r − 2S2r

n− r − S1r
+ r ≤ k < 1 +

2S2r

S1r
+ r

(i− 1)(i− 2S1r) + 2S2r

(k − r − i)2 + (k − r − i)
, k ≥ 1 +

2S2r

S1r
+ r, i =

⌈
(k − r − 1)S1r − 2S2r

k − r − S1r

⌉
Since the relation P (n, k,p) ≤ BP (n−r, k−r,p) is satisfied for every 0 ≤ r ≤ k−1,
the upper bound on P (n, k,p) is obtained by taking the minimum over all possible
values of r:

P (n, k,p) ≤ min
0≤r≤k−1

BP (n− r, k − r,p).

(c) Proceeding in a similar manner as in (b), by using the aggregated moments S1r

and S2r with Chebyshev bound, the upper bound for a given r (0 ≤ r ≤ k − 1)
can be written as follows:

CH(n− r, k − r, p) =

1, k < S1r + r

S1r − (S2
1r − 2S2r)

S1r − (S2
1r − 2S2r) + (k − r − S1r)2

, S1r + r ≤ k ≤ n.

The upper bound on P (n, k,p) is obtained by taking the minimum over all possi-
ble values of r:

P (n, k,p) ≤ min
0≤r≤k−1

CH(n− r, k − r,p), ∀k ∈ [2, n]

Connection to earlier work:
Prior work in Rüger (1978) shows that ordering of probabilities provides the tightest
upper bound on the probability of the Bernoulli random variables adding up to at least
k while allowing for extremal dependence. Specifically, the bound derived there is:

min

(
1, min

0≤r≤k−1

(
S1r

k − r

))
.
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However, this bound does not use pairwise independence information. Part (a) of The-
orem 3 tightens the analysis in Rüger (1978) for pairwise independent random vari-
ables. It is also straightforward to see that the ordered Schmidt, Siegel and Srinivasan
bound in (2.21) is at least as good as the bound in (2.4) (simply plug in r = 0). Building
on the ordering of probabilities, the bound in (2.22) uses aggregated binomial moments
for k ordered sets of random variables of size n− r where 0 ≤ r ≤ k − 1. When r = 0,
the bound in (2.22) reduces to the original aggregated moment bound of Boros and
Prekopa in (2.7) and hence this bound is at least as tight. Further, the bounds in Theo-
rem 3 are clearly efficiently computable. We next provide two numerical examples to
illustrate the impact of ordering on the quality of the three bounds.

2.3.1 Numerical illustrations

Example 3 (Non-identical marginals). Consider an example with n = 12 random variables
with the probabilities given by

p = (0.0651, 0.0977, 0.1220, 0.1705, 0.3046, 0.4402, 0.4952, 0.6075, 0.6842, 0.8084, 0.9489, 0.9656).

Table 2.3 compares the three ordered bounds with the three unordered bounds and the corre-
sponding tight bound. Numerically, the ordered Boros and Prekopa bound is found to be tight
in this example for k = 7, 8, 9, 12 while the ordered Schmidt, Siegel and Srinivasan bound is
tight for k = 12. The Boros and Prekopa bound is uniformly the best performing of the three
bounds, while among the other two bounds, none uniformly dominates the other. For exam-
ple, comparing the ordered bounds when 7 ≤ k ≤ 9, the Chebyshev bound outperforms the
Schmidt, Siegel and Srinivasan bound, but when k = 6 or 10 ≤ k ≤ 12, the Schmidt, Siegel
and Srinivasan bound does better. Comparing the unordered bounds when 7 ≤ k ≤ 9, the
Schmidt, Siegel and Srinivasan bound outperforms the Chebyshev bound when k = 6 but for
all k ≥ 7, the Chebyshev bound does better. In terms of absolute difference between ordered
and unordered bounds, ordering appears to provide the maximum improvement to the Schmidt,
Siegel and Srinivasan bound, followed by the Boros, Prekopa and the Chebyshev bound.

Bounds k ∈ [1, 4] k = 5 k = 6 k = 7 k = 8 k = 9 k = 10 k = 11 k = 12

Chebyshev 1 1 0.9553 0.5192 0.2552 0.1424 0.0889 0.0603 0.0434
Ordered Chebyshev 1 1 0.9553 0.5192 0.2552 0.1424 0.0883 0.0549 0.0307
Schmidt, Siegel and Srinivasan 1 1 0.9517 0.6831 0.5123 0.3985 0.3188 0.2608 0.2173
Ordered Schmidt, Siegel and Srinivasan 1 1 0.9489 0.6162 0.3620 0.1827 0.0712 0.0250 0.0064
Boros and Prekopa 1 1 0.9497 0.5018 0.2509 0.1326 0.0795 0.0530 0.0379
Ordered Boros and Prekopa 1 1 0.9254 0.5018 0.2509 0.1290 0.0712 0.0249 0.0064
Tight bound 1 0.9957 0.8931 0.5018 0.2509 0.1290 0.0692 0.0230 0.0064

TABLE 2.3: Upper bounds on probability of sum of random variables for n = 12. For
each value k, the bottom row provides the tightest bound which can be computed in this
example as the optimal solution of an exponential-sized linear program. The underlined

instances illustrate cases when the other upper bounds are tight.

Example 4 (Non-identical marginals). In this example, we numerically compute the im-
provement of the new ordered bounds over the unordered bounds for n = 100 variables by
generating 500 instances of random probabilities p = (p1, p2, .., p100). First, we consider small
marginal probabilities by uniformly and independently generating the entries of p between 0.01
and 0.05. When k = n, Figure 2.4a plots the three ordered bounds while Figure 2.4b shows the
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percentage improvement of the three bounds over their unordered counterparts. The percentage
improvement is computed as

(
[unordered-ordered]/unordered

)
× 100%. In this example with

small marginals, the ordered Schmidt, Siegel and Srinivasan bound is equal to the ordered Boros
and Prekopa bound as seen in Figure 2.4a. Ordering tends to improve the Schmidt, Siegel and
Srinivasan bound significantly for smaller probabilities, since both the partial binomial moment
terms S1r and S2r are smaller with smaller marginal probabilities for all r ∈ [0, k − 1].
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FIGURE 2.4: Smaller marginal probabilities pi with n = 100, k = 100 and 500 instances.

The percentage improvement due to ordering in Figure 2.4b is consistently above 80% for
the Schmidt, Siegel and Srinivasan bound, while that of the Boros and Prekopa bound hov-
ers around 60%. The ordered Chebyshev bound shows an almost negligible improvement by
ordering in this example.
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FIGURE 2.5: Larger marginal probabilities pi with n = 100, k = 99 and 500 instances.



Chapter 2. Bounds with Pairwise Independence 30

Next, we consider similar plots when k = n − 1 with larger marginal probabilities. The
entries of p are generated uniformly and independently between 0.05 and 0.99. In Figure 2.5a,
the ordered Chebyshev bound from (2.23) performs better than the ordered Schmidt, Siegel and
Srinivasan bound from (2.21). In Figure 2.5b, the percentage improvement due to ordering is
again most significant for the Schmidt, Siegel and Srinivasan bound, being consistently above
90% while that of the Boros and Prekopa bound is at most 45% and that of the Chebyshev bound
is at most 20%. It is also clear from Figures 2.4 and 2.5 that the ordered Boros and Prekopa
bound from (2.22) is the tightest of the three bounds across the instances, while among the other
two bounds, none uniformly dominates the other. Note that the left plots in both figures 2.4
and 2.5 are shown with the bounds sorted according to the increasing value of the ordered Boros
and Prekopa bound while the right plots in both figures are sorted according to the increasing
percentage improvement of the ordered Chebyshev bound.

Comparison with Chernoff-Hoeffding bounds:
We next compare our ordered and unordered bounds with the Chernoff-Hoeffding
bound (see Chernoff, 1952; Hoeffding, 1963) which are constructed for sums of mu-
tually independent continuous random variables that range in [0, 1]. These bounds are
typically used to provide right tail bounds when the sum deviates exceeds the mean by
a positive quantity. More specifically, along the lines of Schmidt, Siegel, and Srinivasan
(1995), we consider the Hoeffding estimate:

P(
∑n

i=1 c̃i ≥ µ(1 + δ)) ≤ F (n, µ, δ) =

(
1 + µδ

n−µ(1+δ)

)n−µ(1+δ)

(1 + δ)µ(1+δ)

where µ = E[
∑n

i=1 c̃i] =
∑n

i=1 pi and δ > 0 and F (n, µ, δ) can be upper bounded as:

F (n, µ, δ) ≤ G(µ, δ) =

(
eδ

(1 + δ)(1+δ)

)µ
From Theorem 1 in Schmidt, Siegel, and Srinivasan (1995), the inequality

U1(n,p, δ) ≤ U2(n, µ, δ) ≤ F (n, µ, δ) ≤ G(µ, δ) (2.26)

holds for i?-wise independent Bernoulli variables where:

U1(n,p, δ) = min
0≤j≤µ(1+δ)

Sj(p)(
µ(1+δ)

j

) , U2(n, µ, δ) =

(
n
i?

) (µ
n

)i?(
µ(1+δ)
i?

) , i? =

⌈
µδ

1− µ/n

⌉
and Sj(p) = E[Sj(c)] is the expected value of the multilinear polynomial Sj(c) defined
in Section 2.1. Thus with pairwise independent variables and µ ≤ k = µ(1 + δ) ≤ 2,

the above inequality (2.26) will hold since 0 ≤ i? =

⌈
k − µ

1− µ/n

⌉
≤ 2 whenever µ ≤ k ≤

2+µ(1−2/n). When the marginal probabilities are identical and equal p, we have U1 =
U2, and np ≤ k ≤ 2 is sufficient to ensure that the inequality holds. Specifically when
k = 2, the identical probability needs to satisfy p ≤ 2/n. We next consider a numerical
example to demonstrate instances for k = 2 when the unordered and ordered bounds
considered in this section are tighter than the Chernoff-Heoffding bounds.

Example 5 (Comparison with Chernoff-Hoeffding bounds). In this example, we numer-
ically compare the unordered and ordered bounds with the Chernoff-Hoeffding bounds for n =
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100 variables and k = 2. In Figure 2.6a, for 500 monotonically increasing instances of identical
probabilities p ∈ (0, 2/n), we plot the three unordered bounds with F (n, µ, δ) and G(µ, δ).
The identical probability p is increased in equal step-sizes over the interval (0, 2/n) for each in-
stance. The unordered Schmidt, Siegel and Srinivasan bound (2.4) plotted here corresponds to
both U1 and U2 (since U1 = U2 with identical probabilities) and almost coincides with the Boros
and Prekopa bound (similar to the observation in Figure 2.4a with small heterogenous proba-
bilities). The Chernoff-Hoeffding bounds perform better than the unordered Chebshev bound
for the first few instances, when the identical probabilities are small. However, the unordered
Schmidt, Siegel, Srinivasan and Boros, Prekopa bounds are tighter than both estimates of the
Chernoff-Hoeffding bounds across all the instances.
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(a) Identical probabilities in (0, 2/n)
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(b) Non-identical probabilities in (1/n− ε, 1/n+ ε) where ε ∼ U(0, 1/n)

FIGURE 2.6: Comparison of unordered and ordered bounds with Chernoff-Hoeffding
bounds with n = 100, k = 2 and 500 instances

In Figure 2.6b, we consider small heterogenous probabilities by perturbing the marginal
probabilities around 1/n. More specifically, we generate 500 random instances of marginal
probabilities in the interval (1/n− ε, 1/n+ ε) where ε is uniformly and independently gen-
erated in (0, 1/n) for each instance. The three ordered bounds are plotted with the Chernoff-
Hoeffding bounds, where the bounds are sorted according to the increasing value of the ordered
Boros and Prekopa bound. In this case, all the three ordered bounds are tighter than the Chernoff-
Hoeffding bounds across all instances. However, when k is increased towards n, the Chernoff-
Hoeffding bounds are increasingly likely to perform better than the ordered bounds. Specifically,
the Chernoff-Hoeffding estimates F (n, µ, δ) and G(µ, δ) would likely overcome the unordered
and ordered Schmidt, Siegel and Srinivasan bound U1, since the available information is only
up to j = 2 while the minimization needs to be executed over 0 ≤ j ≤ k.
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(a) Smaller marginal probabilities p ∈ [0.05, 0.2], µ1 = 12.05
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(b) Larger marginal probabilities p ∈ [0.05, 0.99], µ2 = 49.2

FIGURE 2.7: Comparison of unordered and ordered bounds with Chernoff-Hoeffding
bounds with n = 100 for k ∈ [n]

This is demonstrated in Figure 2.7 where, for n = 100 random variables and for k ∈ [n], we
plot the three ordered bounds with the Chernoff-Hoeffding bounds for a single instance (each) of
randomly generated small and large marginal probabilities. In Figure 2.7a, we consider small
heterogenous probabilities generated uniformly and independently in [0.05, 0.2] with mean
µ1 = 12.05 while Figure 2.7b considers larger heterogenous probabilities uniformly and in-
dependently generated in [0.05, 0.99] with µ2 = 49.2. When k < µ1 (µ2), the ordered bounds
and Chernoff-Hoeffding bounds are trivially one, while the ordered Schmidt, Siegel and Srini-
vasan bound is clearly dominated by the Chernoff-Hoeffding bounds for k ≥ µ1 (µ2) in both
figures. The ordered Boros, Prekopa and Chebyshev bounds dominate the Chernoff-Hoeffding
bounds in a small window k ∈ [µ1, 17] and k ∈ [µ2, 57] (in the left and right figures respec-
tively), after which the Chernoff-Hoeffding bounds dominate in the right tail and quickly drop
to zero. While the Chernoff-Hoeffding bounds restrict the random variables to be mutual inde-
pendent and relax their support to [0, 1], the improved bounds proposed in this section restrict
the support to {0, 1} and relax the independence assumption to pairwise independence. This ex-
ample thus serves to demonstrate that the Chernoff-Hoeffding bounds in spite of their stronger
assumptions of mutual independence are not necessarily tighter than the pairwise independent
ordered and unordered bounds discussed in this section.

2.4 Tightness in special cases

In this section, we identify two tightness instances, one for the unordered Chebyshev,
Schmidt, Siegel, Srinivasan and Boros, Prekopa bounds in (2.2), (2.4) and (2.7) and the
other for the corresponding ordered bounds derived in Theorem 3 of the preceding
section. Firstly, in Section 2.4.1, for identical variables, the symmetry in the problem
allows for closed-form tight bounds for any k ∈ [2, n]. We prove this by showing an
interesting equivalence of the exponential-sized linear program (2.5) which computes
the exact bound with a polynomial sized linear program analyzed in computing the
unordered Boros and Prekopa bound in (2.7). We further use this exact bound to iden-
tify instances when the other two unordered bounds are tight.
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Secondly, in 2.4.2, we demonstrate the usefulness of the ordered bounds by identifying
a special case when n − 1 marginals are identical (with additional conditions on the
identical probability and k), when the ordered Schmidt, Siegel, Srinivasan and Boros,
Prekopa bounds in (2.21) and (2.22) are tight.

2.4.1 Tightness of bounds with identical marginals

In this section, we provide probability bounds for n pairwise independent random
variables adding up to at least k ∈ [2, n] when their marginals are identical. The next
theorem provides the tight bound with identical marginals, by applying the Boros and
Prekopa bound in (2.7) to pairwise independent variables with ξ̃ =

∑
i∈[n] c̃i.

Theorem 4. Assume pi = p ∈ (0, 1) for i ∈ [n]. Let P (n, k, p) represent the tightest upper
bound on the probability of n pairwise independent identical Bernoulli random variables adding
up to at least an integer k ∈ [n]. Then,

P (n, k, p) =



1, k < η, case (a)

[(n− 1)(1− p) + k]p

k
, k = η, case (b)

n(n− 1)p2 + (i− 1)(i− 2np)

(k − i)2 + (k − i)
, k > η, case (c)

(2.27)

where η = d(n− 1)pe and i =

⌈
np(k − 1− (n− 1)p)

k − np

⌉
.

Proof. The tightest upper bound P (n, k, p) is the optimal value of the linear program:

P (n, k, p) = max
∑

c∈C:
∑
i ci≥k

P(c)

s.t.
∑

c∈C:ci=1

P(c) = p, ∀i ∈ [n],

∑
c∈C:ci=1,cj=1

P(c) = p2, ∀(i, j) ∈ Kn,

∑
c∈C

P(c) = 1

P(c) ≥ 0, ∀c ∈ C,

(2.28)

where the decision variables are the joint probabilities P(c) = P(c̃ = c) for c ∈ C.
Consider the following linear program in n + 1 variables which provides an upper
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bound on P (n, k, p):

BP (n, k, p) = max
n∑
`=k

v`

s.t.
n∑
`=0

v` = 1

n∑
`=1

`v` = np

n∑
`=2

(
`

2

)
v` =

(
n

2

)
p2

v` ≥ 0, ∀` ∈ [0, n],

(2.29)

where the decision variables are the probabilities v` = P(
∑n

i=1 c̃i = `) for l ∈ [0, n].
Linear programs of the form (2.29) have been studied in Boros and Prékopa (1989)
and Prékopa (1990a) in the context of aggregated binomial moment problems. As we
shall see, these two formulations are equivalent with identical pairwise independent
random variables.
Step (1): P (n, k, p) ≤ BP (n, k, p)
Given a feasible solution to (2.28) denoted by P(c), construct a feasible solution to the
linear program (2.29) as:

v` =
∑

c∈C:
∑
i ci=l

P(c), ∀l ∈ [0, n].

By taking expectations on both sides of the equality (2.3), we get:

n∑
l=j

(
l

j

)
P

(
n∑
i=1

c̃i = l

)
= E [Sj(c̃)] , ∀j ∈ [0, n].

Applying it for j = 0, 1, 2, we get the three equality constraints in (2.29):

n∑
`=0

v` = 1,

n∑
`=1

`v` = E

[
n∑
i=1

c̃i

]
= np,

n∑
`=2

(
`

2

)
v` = E

 ∑
(i,j)∈Kn

c̃ic̃j

 = n(n− 1)p2/2.
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Lastly, the objective function value of this feasible solution satisfies:

n∑
`=k

v` =
n∑
`=k

∑
c∈C:

∑
i ci=l

P(c)

=
∑

c∈C:
∑
i ci≥k

P(c).

Hence, P (n, k, p) ≤ BP (n, k, p).
Step (2): P (n, k, p) ≥ BP (n, k, p)
Given an optimal solution to (2.29) denoted by v, construct a feasible solution to the
linear program (2.28) by distributing v` equally among all the realizations in {0, 1}n
with exactly ` ones:

P(c) =
v`(
n
`

) , ∀c ∈ C :
∑n

i=1 ci = `,∀` ∈ [0, n].

The first constraint in (2.28) is satisfied since:

∑
c∈C

P(c) =

n∑
`=0

∑
c∈C:

∑
i ci=l

v`(
n
`

)
[since

∣∣{0, 1}n :
∑n

i=1 ci = `
∣∣ =

(
n
`

)
]

=

n∑
`=0

v`

= 1.

The second constraint in (2.28) is satisfied since:

∑
c∈C:cj=1

P(c) =
n∑
`=1

v`(
n
`

)(n− 1

`− 1

)
[since

∣∣{0, 1}n :
∑n

i=1 ci = `, cj = 1
∣∣ =

(
n−1
`−1

)
]

=

n∑
`=1

`v`
n

= p.

The third constraint in (2.28) satisfied since:

∑
c∈C:ci=1,cj=1

P(c) =
n∑
`=2

v`(
n
`

)(n− 2

`− 2

)
[since

∣∣{0, 1}n :
∑n

t=1 ct = `, ci = 1, cj = 1
∣∣ =

(
n−2
`−2

)
]

=
2

n(n− 1)

n∑
`=2

(
`

2

)
v`

= p2.
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The objective function value of the feasible solution is given by:

∑
c∈C:

∑
i ci≥k

P(c) =
n∑
`=k

∑
c∈C:

∑
i ci=l

P(c)

=

n∑
`=k

v`

= BP (n, k, p).

Hence, the optimal objective values of the two linear programs are equivalent. The
formula for the tight bound in the theorem is then exactly the Boros and Prekopa bound
in (2.7) (the bound BP (n, k, p) is also derived in the work of Sathe, Pradhan, and Shah
(1980), although tightness of the bound is not shown there). It is also straightforward
to verify that the following distributions attain the bounds for each of the cases (a)−(c)
in the statement of the theorem:

(a) The probabilities are given as:

P(c) =



(1− p)(j − (n− 1)p)(
n−1
j−1

) , if
n∑
t=1

ct = j − 1,

(1− p)(1 + (n− 1)p− j)(
n−1
j

) , if
n∑
t=1

ct = j,

n(n− 1)p2 + (j − 1)(j − 2np)

(n− j)2 + (n− j)
, if

n∑
t=1

ct = n,

(2.30)

where j = d(n− 1)pe and all other support points have zero probability.
(b) The probabilities are given as:

P(c) =



1− p
k

(k − (n− 1)p), if
n∑
t=1

ct = 0,

p(1− p)(
n−2
k−1

) , if
n∑
t=1

ct = k,

p((n− 1)p− (k − 1))

n− k
, if

n∑
t=1

ct = n,

(2.31)

where all other support points have zero probability.
(c) The probabilities are given as:

P(c) =



np[(n− 1)p− (k + i− 1)] + ik(
n
i−1

)
(k − i+ 1)

, if
n∑
t=1

ct = i− 1,

np[(k + i− 2)− (n− 1)p]− k(i− 1)(
n
i

)
(k − i)

, if
n∑
t=1

ct = i,

n(n− 1)p2 + (i− 1)(i− 2np)(
n
k

)
[(k − i)2 + (k − i)]

, if
n∑
t=1

ct = k,

(2.32)
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where all other support points have zero probability and the index i is evalu-
ated as stated in equation (2.27)(c). It is straightforward to see that with identical
marginals, the tight union bound in Theorem 2 reduces to the bound in case (b) of
Theorem 4.

Connection of Theorem 4 to earlier work:
In related work, Benjamini, Gurel-Gurevich, and Peled (2012) and Peled, Yadin, and
Yehudayoff (2011) derived probability bounds (not necessarily tight) for the sum of t-
wise independent Bernoulli random variables with identical probabilities (as a special
case, pairwise independent random variables are studied in these papers). For the
specific case, where all the random variables take a value of one (this corresponds to
k = n in case (c)), the tight bound is provided in these works by making a connection
with the Boros and Prekopa bound in (2.7). Recent work by Garnett (2020) provides the
tight upper bound on the probability that the sum of pairwise independent Bernoulli
random variables with identical marginals exceeds the mean by a small amount. This
corresponds to case (b). Theorem 4, however, provides the equivalence for all values of
(n, k, p). The corresponding lower bound for identical pairwise independent random
variables is derived in Section 2.6. Further, as we will show in Section 2.7.1, the analysis
in Theorem 4 can be easily extended to more general t-wise independent variables
(t ≥ 3) from the symmetry assumptions.

Tightness of alternative bounds

We next discuss an application of Theorem 4. Since the marginals are identical, it is
easy to see that the ordered bounds in Theorem 3 reduce to the unordered bounds
corresponding to r = 0. While the unordered Boros and Prekopa bound provides the
tightest upper bound with identical marginals, the formula is more involved than the
unordered Chebyshev bound which reduces to:

P (n, k, p) ≤

{
1, k < np,

np(1− p)/
(
np(1− p) + (k − np)2

)
, np ≤ k ≤ n.

(2.33)

and the unordered Schmidt, Siegel and Srinivasan bound which reduces to:

P (n, k, p) ≤ min

(
1,
np

k
,
n(n− 1)p2

k(k − 1)

)
. (2.34)

It is possible to then use Theorem 4 to identify conditions on the parameters (n, k, p) for
which the bounds in (2.33) and (2.34) are tight. We only focus on the non-trivial cases
where the tight bound is strictly less than one and n ≥ 3. Henceforth, the Chebyshev
and Schmidt, Siegel, Srinivasan bounds referred to in this section are the unordered
bounds.

Proposition 2.
(a) For p = α/(n − 1) and any integer α ∈ [n − 2], the Chebyshev bound in (2.33) is tight

for the values of k = α+ 1 and k = n.
(b) For p ≤ 1/(n− 1), the Schmidt, Siegel and Srinivasan bound in (2.34) is tight for all k ∈

[2, n] while for p > 1/(n−1), the bound is tight for all k ∈ [d1 + (n− 1)pe ,
⌊
n(n− 1)p2/(np− 1)

⌋
].

Proof. Since Theorem 4 provides the tight bound, we simply need to show the equiva-
lence with the bounds in (2.33) and (2.34) for the instances in the proposition.



Chapter 2. Bounds with Pairwise Independence 38

(a) Consider p = α/(n− 1) for any integer α ∈ [n− 2].

1. Set k = α + 1. This corresponds to case (c) in Theorem 4. Plugging in the values,
the index i which is required for finding the tight bound is given by:

i =

⌈
nα(α+ 1− 1− α)/(n− 1)

α+ 1− nα/(n− 1)

⌉
= 0.

The corresponding tight bound in (2.27) gives:

P (n, k, p) =
nα

(n− 1)(α+ 1)
=

np

np+ 1− p
.

It is straightforward to verify by plugging in the values that the Chebyshev bound
is exactly the same.

2. Set k = n. This corresponds to case (c) in Theorem 4. Plugging in the values, the
index i in the tight bound is given by:

i =

⌈
nα(n− 1− α)/(n− 1)

n− nα/(n− 1)

⌉
= α.

The tight bound in (2.27) gives:

P (n, k, p) =
α

(n− 1)(n− α)
=

p

p+ n(1− p)
.

It is straightforward to verify by plugging in the values that the Chebyshev bound
is exactly the same in this case.

(b) Observe that the last two terms in the Schmidt, Siegel and Srinivasan bound in
(2.34) satisfy:

n(n− 1)p2

k(k − 1)
≤ np

k
when k ≥ 1 + (n− 1)p.

Since this implies 1 ≥ np/k, the bound in (2.34) reduces to n(n− 1)p2/k(k − 1).
The range of k ≥ 1+(n−1)p corresponds to case (c) in Theorem 4. If k = 1+(n−1)p,

the index i =

⌈
np(k − (1 + (n− 1)p))

k − np

⌉
= 0 and the tight bound is:

np

1 + (n− 1)p
,

which is exactly the Schmidt, Siegel and Srinivasan bound. We can also verify that
when the index i = 1 in case (c), then the tight bound in Theorem 4 reduces to:

P (n, k, p) =
n(n− 1)p2 + (1− 1)(1− 2np)

(k − 1)2 + (k − 1)

=
n(n− 1)p2

k(k − 1)
.
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We now identify conditions when k > 1 + (n− 1)p and the index i is equal to one.

1. Set 0 < p < 1/(n − 1). For the values of the p in this interval, the valid range of
k in case (c) corresponds to all integer values of k > 1 + (n − 1)p which means
k ≥ 2. For the probability 0 < p ≤ 1/n, the index i satisfies:

i =

⌈
np(k − np− (1− p))

k − np

⌉
=

⌈
np

(
1− 1− p

k − np

)⌉
= 1

[since 0 < np ≤ 1 and (1− p) ∈ (0, 1) and k − np ≥ 1− p].

For the probability 1/n < p < 1/(n − 1), let (n − 1)p = 1 − δ where δ < 1. Then,

since np > 1, we have n
(1− δ)
n− 1

> 1 or equivalently nδ < 1. The index i satisfies:

i =

⌈
np((n− 1)p− (k − 1))

np− k

⌉

<

⌈
np(1− δ − (k − 1))

1− k

⌉
[since np > 1 and (n− 1)p = 1− δ]

=

⌈
np(k − 2 + δ)

k − 1

⌉

<

⌈
n(k − 2 + δ)

(n− 1)(k − 1)

⌉
[since p < 1/(n− 1)]

=

⌈
n(k − 2 + δ)

(nk − n− k + 1)

⌉

≤
⌈
n(k − 2 + δ)

nk − 2n+ 1

⌉
[since k ≤ n]

=

⌈
n(k − 2) + nδ

n(k − 2) + 1

⌉
= 1

[since k ≥ 2 and 0 < nδ < 1]

Hence, the bound in (2.34) is tight in this case for all integer values of k ≥ 2.

2. For p > 1/(n− 1), the index i = 1 when k(np− 1) ≤ n(n− 1)p2. This corresponds
to all integer values k ∈ [d1 + (n− 1)pe ,

⌊
n(n− 1)p2/(np− 1)

⌋
].
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A specific instance to show the tightness of the Chebyshev bound is to set p = 1/2,
k = n and n = 2m − 1 using m independent Bernoulli random variables to construct n
pairwise independent Bernoulli random variables (see Tao, 2012; Goemans, 2015; Pass
and Spektor, 2018, for this construction). Proposition 2(a) includes this instance (set
α = (n − 1)/2, k = n and n = 2m − 1). In addition, Proposition 2(a) identifies other
values of p and k where the Chebyshev bound is tight. Proposition 2(b) also shows
that the Schmidt, Siegel and Srinivasan bound is tight for identical marginals for small
probability values (p ≤ 1/(n − 1)), for all values of k, except k = 1. We now provide a
numerical illustration of the results in Theorem 4 and Proposition 2.

Example 6 (Identical marginals). In Table 2.4, we provide a numerical comparison of the
bounds for n = 11 for a set of values of p and k. The instances in Table 2.4 cover all the
conditions identified in Proposition 2 when the Chebyshev and Schmidt, Siegel, Srinivasan
bounds are tight. The instances when the Chebyshev bound is tight correspond to (i) p = 0.1
(here α = 1 and the Chebyshev bound is tight for k = 2 and k = 11), (ii) p = 0.2 (here α = 2
and the Chebyshev bound is tight for k = 3 and k = 11) and (iii) p = 0.5 (here α = 5 and the
Chebyshev bound is tight for k = 6 and k = 11). The Schmidt, Siegel and Srinivasan bound is
tight for the small values of p = 0.01, 0.05, 0.10 (which are less than or equal to 1/(n−1) = 0.1)
and for all values of k, except k = 1.

p/k 1 2 3 4 5 6 7 8 9 10 11
0.01 0.10900 0.00550 0.00184 0.00092 0.00055 0.00037 0.00027 0.00020 0.00016 0.00013 0.00010

0.12087 0.02959 0.01288 0.00715 0.00454 0.00313 0.00229 0.00175 0.00138 0.00112 0.00092
0.11000 0.00550 0.00184 0.00092 0.00055 0.00037 0.00027 0.00020 0.00016 0.00013 0.00010

0.05 0.52500 0.13750 0.04583 0.02292 0.01375 0.00917 0.00655 0.00491 0.00382 0.00306 0.00250
0.72069 0.19905 0.08008 0.04205 0.02571 0.01729 0.01240 0.00933 0.00726 0.00582 0.00477
0.55000 0.13750 0.04583 0.02292 0.01375 0.00917 0.00655 0.00491 0.00382 0.00306 0.00250

0.10 1 0.55000 0.18333 0.09167 0.05500 0.03667 0.02620 0.01965 0.01528 0.01223 0.01000
1 0.55000 0.21522 0.10532 0.06112 0.03960 0.02766 0.02038 0.01562 0.01235 0.01000
1 0.55000 0.18333 0.09167 0.05500 0.03667 0.02620 0.01965 0.01528 0.01223 0.01000

0.11 1 0.59950 0.22184 0.11092 0.06655 0.04437 0.03037 0.02170 0.01627 0.01266 0.01013
1 0.63310 0.25156 0.12154 0.06975 0.04484 0.03113 0.02283 0.01744 0.01375 0.01112
1 0.60500 0.22184 0.11092 0.06655 0.04437 0.03170 0.02377 0.01849 0.01479 0.01210

0.15 1 0.78750 0.41250 0.19584 0.09792 0.05875 0.039167 0.02798 0.020983 0.01632 0.01306
1 0.91968 0.43489 0.20253 0.11109 0.06901 0.04672 0.03362 0.02531 0.01972 0.01579
1 0.82500 0.41250 0.20625 0.12375 0.08250 0.05893 0.044197 0.034375 0.02750 0.02250

0.20 1 1 0.73334 0.33334 0.16667 0.10000 0.06667 0.04762 0.03572 0.02778 0.02223
1 1 0.73334 0.35200 0.18334 0.10865 0.07097 0.04972 0.03667 0.02812 0.02223
1 1 0.73334 0.36667 0.22000 0.14667 0.10477 0.07858 0.06112 0.04889 0.04000

0.50 1 1 1 1 1 0.91667 0.54167 0.29167 0.17500 0.11667 0.08334
1 1 1 1 1 0.91667 0.55000 0.30556 0.18334 0.11957 0.08334
1 1 1 1 1 0.91667 0.65477 0.49108 0.38195 0.30556 0.25000

TABLE 2.4: Upper bounds on probability of sum of random variables for n = 11. For each
value of p and k, the table provides the tight bound in (2.27) followed by the Chebyshev
bound (2.33) and the Schmidt, Siegel, Srinivasan bound (2.34). The underlined instances

illustrate cases when the upper bounds in either (2.33) or (2.34) are tight.

It is also clear why the Schmidt, Siegel and Srinivasan bound is not tight for k = 1, since
it just reduces to the Markov bound np and does not exploit the pairwise independence infor-
mation. For k = 1, the tight bound from Theorem 4 is given by np − (n − 1)p2 (see Theorem
2 which reduces to the same bound for k = 1). For larger values of p above 0.1, such as
p = 0.11 in the table, from Proposition 2(b), the Schmidt, Siegel and Srinivasan bound is tight
for k ∈ [d2.1e , b6.33c] which corresponds to k ∈ [3, 6]. This can be similarly verified for the
other probabilities p = 0.15, 0.2, 0.5 in the table.
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2.4.2 Tightness of ordered bounds in a special case

In this section, we provide an instance where two of the ordered bounds derived in
Section 2.3 are shown to be tight. While the ordered bounds in Theorem 3 are not tight
in general, the next proposition identifies a special case with almost identical marginals
where the bounds of Schmidt, Siegel, Srinivasan in (2.21) and Boros, Prekopa in (2.22)
are shown to be attained.

Proposition 3. Suppose the marginal probabilities equal p ∈ (0, 1/(n− 1)] for n− 1 random
variables and q ∈ (0, 1) for one random variable. Then, the ordered bounds in (2.21) and (2.22)
are tight for the following three instances and given by the bound:

P (n, k, p, q) =



(
n−1

2

)
p2(

k−1
2

) , k ≥ 3, q ≥ (n− 2)p case (a)(
n−1

2

)
p2(

k−1
2

) , k ∈
[
d2 + (n− 2)p/qe, n

]
, p ≤ q < (n− 2)p case (b)

pq, k = n, 0 < q < p case (c)

(2.35)

Proof. We first prove that the ordered bounds of Schmidt, Siegel, Srinivasan and Boros,
Prekopa reduce to the bound in (2.35) in each of the three cases and then show that the
bound is tight.
Step (1): Show reduction of ordered bounds to the bound in (2.35)
Let P (n, k, p, q) represent the tightest upper bound when n − 1 probabilities are p and
one is q. It can be observed that the bound in (2.35) is non-trivial for the three instances
as follows: (

n−1
2

)
p2(

k−1
2

) =
(n− 1)p(n− 2)p

(k − 1)(k − 2)
< 1

for cases (a) and (b) since (n− 2)p < (n− 1)p ≤ 1 and k ≥ 3, and

pq < 1

for case (c) since q < p < 1 It is easy to verify that the ordered Schmidt, Siegel and
Srinivasan bound in (2.21) reduces to the bound in (2.35) for a specific parameter r2 in
each of the three cases:

r2 = 1, cases (a) and (b)
r2 = n− 2, case (c).

(2.36)

It can be similarly verified that the ordered Boros and Prekopa bound in (2.22) reduces
to the bound in (2.35) with the following parameters r and i in each of the three cases:

r = 1, i = 0, cases (a) and (b)
r = n− 2, i = 0, case (c).

(2.37)

The effectiveness of ordering is demonstrated by (2.36) and (2.37) in that the ordered
bounds of Schmidt, Siegel, Srinivasan and Boros, Prekopa correspond to r > 0 while
their unordered counterparts in (2.4) and (2.7) correspond to r = 0 (considering all n
variables). The unordered bounds are thus strictly weaker than the ordered bounds
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which in turn are tight as proved in the next step.
Step (2): Prove tightness of the bound in (2.35) by constructing extremal distributions
Consider the linear program to compute P (n, k, p, q) which can be written as:

P (n, k, p, q) = max
∑

c∈C:
∑
t ct≥k

P(c)

s.t.
∑

c∈C:ci=1

P(c) = p, ∀i ∈ [n]

∑
c∈C:cn=1

P(c) = q

∑
c∈C:ci=1,cj=1

P(c) = p2, ∀(i, j) ∈ Kn−1

∑
c∈C:ci=1,cn=1

P(c) = pq, ∀i ∈ [n− 1]

∑
c∈C

P(c) = 1

P(c) ≥ 0, ∀c ∈ C

(2.38)

We now proceed to prove tightness of the bound in (2.35) for each of the three instances
of the (n, k, p, q) tuple by constructing feasible distributions of (2.38) which attain the
bound.

(a) P (n, k, p, q) =

(
n−1

2

)
p2(

k−1
2

) (cases (a) and (b)):

The following distribution attains the tight bound:

P(c) =



(1− q)(1− (n− 1)p), if
n∑
t=1

ct = 0 (x)

p(1− q), if
n−1∑
t=1

ct = 1, cn = 0 (y)

q(1− (n− 1)p) +
(n− 1)(n− 2)p2

(k − 1)
, if

n−1∑
t=1

ct = 0, cn = 1 (z)

p(q − n− 2

k − 2
p), if

n−1∑
t=1

ct = 1, cn = 1 (u)

p2(
n− 3

k − 3

) , if
n−1∑
t=1

c̃t = k − 1, cn = 1 (v)

(2.39)
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We use symbols x, y, z, u, v to denote the probability of the associated scenarios in
(2.39). The constraints in (2.38) reduce to:(

n− 2

k − 2

)
v + u+ y = p

(
n− 1

k − 1

)
v + (n− 1)u+ z = q

(
n− 3

k − 3

)
v = p2

(
n− 2

k − 2

)
v + u = pq

x+ y + z + u+ v = 1

and using x, y, z, u, v from (2.39), it can be easily verified that all of the above con-
straints are satisfied. The non-negativity constraints for y, v are satisfied while
x ≥ 0, z ≥ 0 is satisfied since (n − 1)p ≤ 1. For the remaining probability u, for
which we have:

case (a): u = p

(
q − n− 2

k − 2
p

)
≥ y = p

(
q − n− 2

3− 2
p

)
= p(q − (n− 2)p)

≥ 0

where the first inequality is due to k ≥ 3 while the last inequality is due to q >
(n− 2)p and

case (b): u = p

(
q − n− 2

k − 2
p

)
≥ p

(
q − k − 2

k − 2
q

)
= 0.

where the inequality is due to k ≥ 2 + (n − 2)p/q. The only support points con-
tributing to the objective function are the first set of

(
n−1
k−1

)
scenarios, and so we

have P (n, k, p, q) =
(
n−1
k−1

) p2(
n−3
k−3

) =

(
n−1

2

)
p2(

k−1
2

) .
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(b) P (n, k, p, q) = pq (case (c)):
The following distribution attains the tight bound pq:

P(c) =



(1− p)(1− (n− 2)p− q), if
n∑
t=1

ct = 0 (x)

p(1− p), if
n−1∑
t=1

ct = 1, cn = 0 (y)

q(1− p), if
n−1∑
t=1

ct = 0, cn = 1 (z)

p(p− q), if
n−1∑
t=1

ct = n− 1, cn = 0 (u)

pq, if
n∑
t=1

ct = n (v)

(2.40)

The constraints in (2.38) reduce to:

y + u+ v = p

z + v = q

u+ v = p2

v = pq

x+ y + z + u+ v = 1

and using x, y, z, u, v from (2.40), it can be easily verified that all of the above con-
straints are satisfied. The non-negativity constraints for y, z, u, v are satisfied by
0 < q ≤ p ≤ 1 while for x, we have:

x = (1− p)(1− (n− 2)p− q)

≥ (1− p)(1− (n− 2)p− p)

= (1− p)(1− (n− 1)p)

≥ 0

where the first inequality is due to q < p while the last inequality is due to (n −
1)p ≤ 1. The distribution in (2.40) attains the bound pq. We have thus constructed
two feasible probability distributions in (2.39) and (2.40) which attain the bound
in (2.35) in each of the three instances defined by the (n, k, p, q) tuple. Hence the
parameters r2, r in (2.36) and (2.37) defined for each of the three cases must be
the minimizers which exactly reduce the ordered bounds in (2.21) and (2.22) to
the tight bound in (2.35).

Example 7. This example demonstrates the usefulness of Proposition 3 when n = 100 and
p = 0.01 ((n−1)p ≤ 1). It compares the tight bounds computed from (2.35) with the unordered
bounds of Schmidt, Siegel, Srinivasan from (2.4) and that of Boros, Prekopa from (2.7).
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(a) q = 0.99, q ≥ (n− 2)p, k ≥ 3
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(b) q = 0.1, p ≤ q < (n− 2)p, k ≥ 12

FIGURE 2.8: Comparison of unordered and tight bounds when n = 100, p = 0.01

Figure 2.8a plots the two unordered bounds along with the tight bound when q = 0.99
(case (a) of Proposition 3), where the tight bound is valid for all k in [3, n], while Figure 2.8b
compares the bounds when q = 0.1 (case (b) of Proposition 3) for k ≥ 12 as the tight bound is
valid when k ≥ d2 + (n− 2)p/qe = d11.8e = 12. The unordered Boros and Prekopa bound is
much tighter than the unordered Schmidt, Siegel and Srinivasan bound in both figures. Hence,
Figure 2.8 demonstrates that with ordering, the relative improvement of the Schmidt, Siegel and
Srinivasan bound is much better than that of the Boros and Prekopa bound although both the
ordered bounds reduce to the tight bound in (2.35).

2.5 Correlation gap improvements with general submodular
functions for n = 2

In this section we extend the results from Section 2.2.3 to more general submodular
functions to show that the upper bound on the correlation gap can be improved from
e/(e− 1) to 4/3 for n = 2 random variables.

Theorem 5. Given n = 2 random variables with univariate marginal probabilities p1, p2, the
correlation gap κu(p) for any nonnegative, nondecreasing, submodular set function, f(S), is
always upper bounded by 4/3 and this bound is attained.

Proof. For n = 2 random variables, consider a nonnegative, nondecreasing, submod-
ular set function f : S → R+ whose domain S ⊆ {1, 2} maps to the scenario set
c ∈ {0, 1}2 through the relation:

ci = 1i∈S(S), ∀i = 1, 2, S ∈ {∅, {1}, {2}, {1, 2}}

Recall from Section 2.2.3 that the correlation gap is defined as:

κu(p) = sup
θ∈Θu

Eθ[f(S)]

Eθind[f(S)]
.
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This theorem shows that the upper bound of e/(e − 1) on κu(p) proved in Calinescu
et al. (2007) and Agrawal et al. (2012) can be improved to 4/3 in special cases such as
n = 2 random variables. We note that for n = 2, the following conditions are satisfied
if and only if f is a non-negative, non-decreasing, submodular set function:

Set function property Condition satisfied by f(S)

Submodularity f ({1}) + f ({2}) ≥ f ({1, 2}) + f (∅)

Non-decreasing,
Non-negativity

f ({1, 2}) ≥ f ({1}) ≥ f (∅) ≥ 0

f ({1, 2}) ≥ f ({2}) ≥ f (∅) ≥ 0

TABLE 2.5: Conditions satisfied by assumed properties of set function for n = 2

Note that we consider a modified non-negative, non-decreasing submodular function

g1(S) = f(S)− f(∅), S ⊆ {1, 2},

then, g1(∅) = 0 and the correlation gap κu(p) can only increase by considering g1(S)
instead of f(S) since

κu(p) = sup
θ∈Θu

Eθ[g1(S)]

Eθind[g1(S)]

=

sup
θ∈Θu

Eθ[f(S)]− f(∅)

Eθind[f(S)]− f(∅)

≥ sup
θ∈Θu

Eθ[f(S)]

Eθind[f(S)]

Similarly we can consider a normalized non-negative, non-decreasing submodular func-
tion by dividing f by its largest value f ({1, 2}), i.e.,

g2(S) =
f(S)

f{1, 2}
, S ⊆ {1, 2},

where f ({1, 2}) > 0 (otherwise f(S) is trivially zero everywhere) and the correlation
gap κu(p) would remain unchanged by considering g2(S) instead of f(S). Since g1(∅) =
0 and g2(S) ∈ [0, 1], ∀S ⊆ {1, 2}, we can without loss of generality assume that

f (∅) = 0, f ({1, 2}) = 1

and the conditions in Table 2.5 reduce to:

0 ≤ f ({1}) ≤ 1, 0 ≤ f ({2}) ≤ 1, f ({1}) + f ({2}) ≥ 1 (2.41)

Next consider the primal-dual linear program pair which compute the numerator sup
θ∈Θu

Eθ[f(S)]

of κu(p) as their optimal objective:
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max
∑
S⊆[n]

f(S)P(S)

s.t.
∑

S⊆[n]: i∈S
P(S) = pi, i = 1, 2,

∑
S∈[n]

P(S) = 1,

P(S) ≥ 0
(2.42)

min
n∑
i=1

λipi + λ0

s.t. λ0 ≥ f (∅)

λ2 + λ0 ≥ f ({2})

λ1 + λ0 ≥ f ({1})

λ1 + λ2 + λ0 ≥ f ({1, 2})

λ0, λ1, λ2 free
(2.43)

For n = 2 random variables, the optimal objective of (2.42)-(2.43) pair can be shown to
exist in a closed form attained by the following extremal distributions:

Condition on
p1 + p2

Extremal distribution (2.42) Optimal dual solution
(2.43)

Optimal objective
attainedScenario P(S)

Case 1 p1 + p2 ≤ 1

c1 c2 S

0 0 ∅
0 1 {2}
1 0 {1}
1 1 {1, 2}

1− p1 − p2

p2

p1

0

λ0 = f (∅)
λ1 = f ({1})− f (∅)
λ2 = f ({2})− f (∅)

f ({1}) p1 + f ({2}) p2

+f (∅) (1− p1 − p2)

Case 2 p1 + p2 > 1

c1 c2 S

0 0 ∅
0 1 {2}
1 0 {1}
1 1 {1, 2}

0
1− p1

1− p2

p1 + p2 − 1

λ0 = f ({1}) + f ({2})
−f ({1, 2})

λ1 = f ({1, 2})− f ({2})
λ2 = f ({1, 2})− f ({1})

f ({1}) (1− p2) + f ({2}) (1− p1)

+f ({1, 2}) (p1 + p2 − 1)

TABLE 2.6: Possible extremal distributions with extremal dependence for n = 2 :

It is straightforward to verify using the conditions in Table 2.5 that the proposed opti-
mal dual solutions are indeed feasible for the dual linear program (2.43) and attain the
same objective value as the primal (2.42). We now proceed to prove that in both cases
of Table 2.6, the correlation gap κu(p) ≤ 4/3.

Case 1:
Note that with n = 2, mutual independence is equivalent to pairwise independence,
and thus when p1 +p2 ≤ 1 we could directly use the analysis from (2.17) in Proposition
1 as follows:

p1 + p2

p1 + p2 − p1p2
=

1

1− 1
1

p1
+

1

p2

≤ 4

3
or p1 + p2 ≥ 4p1p2

The correlation gap can be written as:

κu(p) =
f ({1}) p1 + f ({2}) p2 + f (∅) (1− p1 − p2)

f ({1, 2}) p1p2 + f ({2}) p2 (1− p1) + f ({1}) p1 (1− p2) + f (∅) (1− p1)(1− p2)
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Using the simplified conditions in (2.41), we now need to prove that

κu(p) =
f ({1}) p1 + f ({2}) p2

f ({1}) p1 (1− p2) + f ({2}) p2 (1− p1) + p1p2

≤ 4

3

or

f ({1}) p1 + f ({2}) p2 − 4p1p2 (f ({1}) + f ({2})− 1) ≥ 0 (2.44)

The left hand side of the inequality (2.44) thus simplifies to:

f ({1}) p1 + f ({2}) p2 ≥ f ({1}) p1 + f ({2}) p2

−4p1p2 (f ({1}) + f ({2})− 1) − (p1 + p2) (f ({1}) + f ({2})− 1)

= p2 (1− f ({1})) + p1 (1− f ({2}))

≥ 0

where the first inequality is due to the fact that f ({1}) + f ({2}) − 1 ≥ 0 along with
p1 + p2 ≥ 4p1p2 while the last inequality is due to f ({1}) ≤ 1, f ({2}) ≤ 1.

Case 2:
When p1 + p2 > 1 we have:

(1− p1)(1− p2) < p2(1− p2) ≤ 1

4
or p1 + p2 − p1p2 >

3

4

Using the simplified conditions in (2.41), we need to prove that:

κu(p) =
f ({1}) (1− p2) + f ({2}) (1− p1) + (p1 + p2 − 1)

f ({1}) p1 (1− p2) + f ({2}) p2 (1− p1) + p1p2

≤ 4

3

or [
(1− p1) (1− p2) + 1

3p1p2

]
(f ({1}) + f ({2})− 1) ≤ 1

3
[f ({1}) p1 + f ({2}) p2]

(2.45)
The left hand side of the inequality (2.45) thus simplifies to:[

(1− p1) (1− p2) +
1

3
p1p2

]
(f ({1}) + f ({2})− 1) <

[
1

4
+

1

3
p1p2

]
(f ({1}) + f ({2})− 1)

<
1

3
(p1 + p2) (f ({1}) + f ({2})− 1)

=
1

3
[f ({1}) p1 + f ({2}) p2]

−1

3
[p2 (1− f ({1})) + p1 (1− f ({2}))]

<
1

3
[f ({1}) p1 + f ({2}) p2]
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where the first two inequalities are due to the fact that f ({1}) + f ({2}) − 1 ≥ 0 along

with (1 − p1)(1 − p2) <
1

4
while the last inequality is due to f ({1}) ≤ 1, f ({2}) ≤ 1.

Finally we recall from the result in Proposition 1 that with n = 2, the ratio of the Boole’s
union bound and the pairwise independence union bound (which is the correlation gap
κu(p1, p2) with f(S) = 1S 6=∅) attains the 4/3 bound when p1 = 1/2 and p2 = 1/2. The
proof is thus completed.

2.5.1 Correlation gap with supermodular functions for n = 2

Proposition 4. Given n = 2 random variables with univariate marginal probabilities p1, p2,
the correlation gap κu(p) can be arbitrarily large for any nonnegative, nondecreasing, super-
modular set function, f(S).

Proof. Consider a nonnegative, nondecreasing, supermodular set function defined on
S ⊆ {1, 2} as follows:

f (∅) = f ({1}) = f ({2}) 0, f ({1, 2}) = 1

We now consider a simple instance when the correlation gap κu(p) is arbitrarily large.
Suppose the two variables have negligible marginal probabilities, i.e.,

p1 = ε1, p2 = ε2, where ε2 → 0+, ε2 ≥ ε1

Then with extremal dependence, it is well known that the comonotonic distribution is

c1 c2 S P(S)

0 0 ∅ 1− ε2
0 1 {2} ε2 − ε1
1 0 {1} 0
1 1 {1, 2} ε1

TABLE 2.7: Comonotonic distribution θ∗c for n=2 variables

the extremal distribution for supermodular functions (Tchen, 1980). It is the straight-
forward to see that the correlation gap is unbounded in the limit as follows:

lim
ε2→0

κu(p) = lim
ε2→0

sup
θ∈Θu

Eθ[f(S)]

Eθind[f(S)]

= lim
ε2→0

∑
S⊆[n]

f(S)Pθ∗c (S)

∑
S⊆[n]

f(S)Pθind(S)

= lim
ε2→0

ε1
ε1ε2

= ∞
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2.6 Lower bounds

In this section, we first derive tight lower bounds on the probability of the union of
pairwise independent random variables. Further, we derive the tight lower bound
corresponding to Theorem 4 on the tail probability of sums of identical pairwise in-
dependent random variables for any k ∈ [0, n]. While the tightest upper union bound
P (n, 1,p) was shown in Section 2.2 to reduce to the Hunter (1976)-Worsley (1982) bound
for any given marginal vector p ∈ [0, 1]n, we prove in this section that the correspond-
ing lower bound reduces to the Bonferroni (1936) bound, albeit for a restricted region
of the probability space where the probabilities are small. In the remaining region, the
optimal lower bound increases with increasing probabilities, assuming multiple forms,
unlike the Hunter (1976)-Worsley (1982) upper bound in (2.12), which only has a non-
trivial and trivial part. Thus, the tight lower bounds, unlike the upper bound, do not
appear to be computable in polynomial time for all p ∈ [0, 1]n. Denote by P (n, k,p) the
tightest lower bound on the probability that n pairwise independent random variables
add up to at least an integer k ∈ [n] for distributions

P (n, k,p) = min
θ∈θpw

Pθ

(
n∑
i=1

c̃i ≥ k

)
.

Theorem 6. Sort the probabilities in increasing value as 0 ≤ p1 ≤ p2 ≤ . . . ≤ pn ≤ 1. Then,
the tight lower bound P (n, 1,p) reduces to the Bonferroni bound S1−S2 if the sum of the largest

n− 1 probabilities is at most one, i.e.,
n∑
i=2

pi ≤ 1, where S1 =
∑

i pi and S2 =
∑

(i,j)∈Kn pipj

are the first two binomial moments for the sum of the pairwise independent random variables.

Proof. The dual of the minimization version of the large-sized linear program (2.5) for
k = 1 and pij = pipj which computes the tightest lower union bound P (n, 1,p) can be
written as:

P (n, 1,p) = max
∑

(i,j)∈Kn

λijpipj +
n∑
i=1

λipi + λ0

s.t.
∑

(i,j)∈Kn

λijcicj +

n∑
i=1

λici + λ0 ≤ 1∑
t ct≥k, ∀c ∈ C

(2.46)

Observe that the following solution is dual feasible

λ0 = 0, λi = 1 ∀i ∈ [n], λij = −1 ∀(i, j) ∈ Kn
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since the left hand side of the indicator constraint in (2.46) reduces to:

∑
(i,j)∈Kn

λijcicj +
n∑
i=1

λici + λ0 =
n∑
i=1

ci −
∑

(i,j)∈Kn

cicj

=
∑n

i=1 ci −
(∑n

t=1 ci
2

)
= (

∑n
i=1 ci)

(
3−

∑n
i=1 ci

2

)

=


0,

∑n
i=1 ci = 0

1,
∑n

i=1 ci = 1 or 2

≤ 0,
∑n

i=1 ci ≥ 3

which satisfies the indicator function value on the right hand side. Note that the dual
objective value attains the Bonferroni (1936) bound S1 − S2. We also observe that the
indicator constraint in (2.46) is tight ∀c ∈ C :

∑n
i=1 ci = 0, 1, 2 while it is not tight

when
∑n

i=1 ci ≥ 3. Thus from the complementary slackness of the latter condition, any
optimal primal distribution {P(c); c ∈ C}must satisfy:

P(c) = 0 ∀c ∈ C :

n∑
t=1

ct ≥ 3

This forces the entire mass of probability to be concentrated in the first
(
n

2

)
+ n + 1

scenarios with
∑n

t=1 ct ≤ 2 as follows:

Scenarios c1 c2 . . . ci . . . cn−1 cn Probability

1 scenario 0 0 . . . 0 . . . 0 0 1− S1 + S2

n scenarios



1 0 . . . 0 . . . 0 0 p1

(
1−

∑n
j=1, j 6=1 pj

)
...

...
...

...
...

0 0 . . . 1 . . . 0 0 pi

(
1−

∑n
j=1, j 6=i pj

)
...

...
...

...
...

0 0 . . . 0 . . . 0 1 pn

(
1−

∑n
j=1, j 6=n pj

)

(
n

2

)
scenarios



1 1 . . . 0 . . . 0 0 p1p2
...

...
...

...
...

1 0 . . . 1 . . . 0 0 p1pi
...

...
...

...
...

0 0 . . . 0 . . . 1 1 pn−1pn

TABLE 2.8: Probabilities of scenarios with
∑n−1

t=1 ct ≤ 2
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Note that this is a feasible distribution for the primal problem since

0 ≤ pi
(
1−

n∑
j=1, j 6=i

pj
)
≤ 1, ∀i ∈ [n]

is satisfied due to the condition
∑n

i=2 pi ≤ 1 and it attains the Bonferroni (1936) bound.
It remains to be shown that the optimal objective value S1 − S2 lies in (0, 1). Define the
disaggregated binomial moment Si2 = pi

(∑n
j=1, j 6=i pj

)
≤ pi, i ∈ [n], then

n∑
i=1

Si2 ≤
∑n

i=1 pi

2S2 ≤ S1

S1 − S2 ≥ S2

> 0

Let a =
n∑
i=2

pi ≤ 1, then S1 = p1 + a, and S2 = p1a+ b where b > 0.

S1 − S2 = p1 + a− p1a− b

= 1− (1− p1)(1− a)− b

< 1

We have thus proved that the Bonferroni (1936) bound of the second degree is a tight
lower bound on the probability of the union of n pairwise independent events when
the sum of the probabilities of the n− 1 most likely events is at most one.

We next derive the tight lower bound corresponding to Theorem 4 on the tail probabil-
ity for identical pairwise independent random variables.

Corollary 1. Let P (n, k, p) represent the tightest lower bound on the sum of n identical pair-
wise independent Bernoulli random variables (with probability p ∈ (0, 1)) adding up to at least
an integer k ∈ [0, n]. Then,

P (n, k, p) =



1, k = 0, case (a)

2np(i− 1) + (k − 1)(k − 2i)− n(n− 1)p2

(k − i)2 − (k − i)
, 1 ≤ k ≤ η, case (b)[

(n− 1)p− (k − 2)
]
p

n− (k − 1)
, k = η + 1, case (c)

0, k ≥ η + 2, case (d)

where η = d(n− 1)pe and i =

⌈
np[(n− 1)p− (k − 2)]

np− (k − 1)

⌉
.

Proof. The proof is similar to that of Theorem 4 and can be derived from the closed-
form lower bound derived in Boros and Prékopa (1989). We omit it here for the sake of
brevity.
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2.7 Additional results with identical marginals

In Theorem 4 of Section 2.4.1, we proved that with identical marginals, the Boros and
Prekopa bound in (2.7) provides the tightest bound on the probability of n pairwise in-
dependent variables adding up to at least k. In this section we first extend this result to
more general t-wise independent variables and then show how pairwise independence
is sufficient to achieve non-trivial bounds when k is very close to the mean.

2.7.1 Tight bounds with t-wise independence

Proposition 5. Consider identical t-wise independent Bernoulli random variables with proba-
bilities p ∈ (0, 1) where t ∈ [2, n]. Then, the tightest upper bound on the probability of n such
variables adding up to at least k ∈ [n], denoted by P (n, k, p, t), can be computed as the optimal
value of the aggregated linear program proposed in Prékopa (1990a):

P (n, k, p, t) = max
n∑
`=k

v`

s.t.
n∑

`=m

(
`

m

)
v` =

(
n

m

)
pm, ∀m ∈ {0, 1, . . . , t}

v` ≥ 0, ∀` ∈ [0, n]

(2.47)

where the decision variables are the probabilities v` = P(
∑n

i=1 c̃i = `) for l ∈ [0, n].

Proof. The proof is straightforward from the proof of Theorem 4 which implies the
equivalence of (2.47) with the large-sized linear program:

P (n, k, p, t) = max
∑

c∈C:
∑
i ci≥k

P(c)

s.t.
∑
c∈C

P(c) = 1

∑
c∈C: ci=1, ∀i∈J

P(c) = pm, ∀J ∈ Im, m ∈ [t]

P(c) ≥ 0, ∀c ∈ C,

(2.48)

where Im = {I ⊆ [n] : |I| = m}. In particular for any given feasible solution of
(2.47), we can distribute the probability mass v` evenly across the

(
n
`

)
scenarios for

every ` ∈ [0, n] and satisfy all the constraints in (2.48) while for any given feasible
solution of (2.48), we can aggregate the probabilities P(c) as

v` =
∑

c∈C:
∑
i ci=l

P(c), ∀l ∈ [0, n].

and satisfy all constraints in (2.47). Lastly, we note that for 3-wise independent vari-
ables, a closed-form expression for the optimal objective in (2.47) using the first three
binomial moments has been provided in Boros and Prékopa (1989).

The corresponding tight lower bound P (n, k, p, t) can be computed as the optimal value
of the minimization version of the aggregated linear program (2.47).
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2.7.2 Small deviation bounds

Small deviation bounds of the type P (
∑n

i=1 x̃i ≥ E (
∑n

i=1 x̃i) + δ) for a small constant
δ have been extensively studied in the literature. Classical tail bounds such as the
Markov and Chebyshev inequalities provide small deviation bounds with extremal
dependence and pairwise independence assumptions respectively while the Chernoff-
Hoeffding bound (Chernoff, 1952; Hoeffding, 1963) assumes independence among the
variables. With Bernoulli random variables, Schmidt, Siegel, and Srinivasan (1995)
improved the Chernoff-Hoeffding bounds with the additional advantage of requiring
only limited independence among the variables. In this section we look at small deviation
bounds for sums of pairwise independent identical random variables. We next show
the value of the Boros and Prekopa bound in (2.27) over the Chebyshev and Schmidt,
Siegel, Srinivasan bounds in (2.33) and (2.34) respectively, in computing small deviation
bounds for identical pairwise independent variables.

Proposition 6. Consider n pairwise independent Bernoulli random variables with identical
probabilities p ∈ (0, 1). Then the Boros and Prekopa tight bound P (n, k, p) is strictly less
than one while the Schmidt, Siegel, Srinivasan and Chebyshev bounds are trivially one in the
following two cases:

(a) For p = k/n and any integer k ∈ [n− 1]

(b) For k/n < p < k/(n− 1) and any integer k ∈ [n− 2]

Proof.
(a) We note that in this case k = np and hence computing P (n, k, p) is equivalent to

computing tight small deviation bounds with δ = 0. This corresponds to case (b)
of the Boros and Prekopa bound in (2.27) which reduces to:

P (n, k, p) =
[(n− 1)(1− p) + k]p

k

=
[(n− 1)(1− p) + np]p

np

= 1− (1− p)
n

< 1

where the inequality is due to p < 1. When k = np, the Chebyshev bound in (2.33)
reduces to one while the Schmidt, Siegel and Srinivasan bounds in (2.34) reduce
to

P (n, k, p) ≤ min

(
1,
np

k
,
n(n− 1)p2

np(np− 1)

)
= min

(
1, 1,

np− p
np− 1

)
= 1

(b) We note that in this case

(n− 1)p < k = bnpc < np,

and hence computing P (n, k, p) is equivalent to computing tight small deviation
bounds with δ = −{np} where {np} is the fractional part of the mean. This again



Chapter 2. Bounds with Pairwise Independence 55

corresponds to case (b) of Boros and Prekopa bound in (2.27) which reduces to:

P (n, k, p) =

(
(n− 1)p

bnpc

)
(1− p) + p

< (1− p) + p

= 1

(2.49)

while the inequality is due to bnpc > (n − 1)p. The Chebyshev bound is trivially
one when k < np and the Schmidt, Siegel, Srinivasan bound reduces to:

P (n, k, p) ≤ min

(
1,

np

bnpc
,
np

bnpc
np− p

(bnpc − 1)

)
= 1

Hence in conclusion the Boros and Prekopa bound in (2.27) provides non-trivial
small deviation bounds when k = np or k = bnpc while the Chebyshev and
Schmidt, Siegel, Srinivasan bounds are trivially one.

Corollary 2. Consider n identical pairwise independent Bernoulli random variables with sym-
metric probabilities p = 1/2 where n is even. Then the maximal probability that at least half
the variables are one equals P (n, n/2, p) = 1 − (1/(2n)) which is attained by the Boros and
Prekopa bound while the Schmidt, Siegel, Srinivasan and Chebyshev bounds are trivially one.

Proof. The proof follows from case (a) of Proposition 6 with k = n/2.

Connection to earlier work: The result in Proposition 6 is interesting not only because
of the non-triviality of the Boros and Prekopa bound when the other bounds are trivial,
but also because this feature of Bernoulli random variables manifests from pairwise
independence onwards. For more general random variables, Garnett (2020) proves
that non-triviality of small deviation bounds shows up only with 4-wise independence
and beyond. The fact that pairwise independence is sufficient for computing the best
non-trivial small deviation bounds with identical Bernoulli random variables could be
exploited in various applications using small deviation bounds in graph theory (Feige,
2006), inventory management (Wang and Zhang, 2015) and allied areas.

2.7.3 Bounds on expected stop-loss functions

In this section, we consider bounds on the expected value of a function of the Bernoulli
random vector c̃ and k instead of the tail probability function considered in the preced-
ing sections of this chapter. In particular, we consider functions of the form:

Eθ
[
(
∑n

j=1 c̃j − k)+
]

= Eθ
[
max

(∑n
j=1 c̃j , k

)
− k
]

= Eθ
[∑n

j=1 c̃j −min
(∑n

j=1 c̃j , k
)]

for some joint distribution θ of c̃, k ∈ [n] and where x+ = max(x, 0) is the positive
part of a real number. These functions are commonly referred to as “stop-loss premi-
ums” in the actuarial literature to denote the loss ceded by an insurer to the reinsurer
beyond a retention point. If c̃ represents the random claims from an insurance port-
folio (where ci = 1 if corresponding claim is made and 0 otherwise) and k denotes
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the retention value, the insurer bears up to k claims, but transfers any excess claims
(
∑n

j=1 cj − k)+ to the reinsurer. Hence, the expected value of this excess number de-
notes the average number of claims transferred to the reinsurer under given correlation
assumptions. Alternatively, continuous random variables can be used to denote insur-
ance claim amounts (instead of whether a claim was made) and in this case the expected
value represents the average stop-loss premium paid by the insurer to the reinsurer in
exchange for the risk undertaken.
More specifically, in our context, ξ̃ =

∑n
i=1 c̃i is a discrete random variable which takes

integer values in [0, n]. Problems involving ξ̃, popularly known as discrete moment
problems (DMP), were introduced and extensively studied in the context of probabil-
ity functions under assumptions of limited moment information by Prékopa (1988) and
Prékopa (1990a). Prékopa (1990b) generalized the objective considered to linear func-
tionals of the probabilities P(ξ̃ = i), i ∈ [0, n]. As a special case, for expected stop-loss
functions, useful applications were demonstrated in applied probability (Courtois and
Denuit, 2009) and inventory control models (Ninh, Hu, and Allen, 2019).
In this section we focus on deriving the tight upper bound on such expected stop-
loss functions for identical pairwise independent random variables (with probability
of occurence p ∈ (0, 1)), while in Section 3.4, we derive similar bounds for extremally
dependent variables. Denote the tight upper bound on the expected stop-loss function
computed over the set of distributions in the pairwise independent ambiguity set Θpw

as:

E(n, k, p) = max
θ∈Θpw

Eθ
[(∑n

j=1 c̃j − k
)+
]
, ∀k ∈ [0, n]

which can be computed as the optimal value of the following exponential-sized linear
program:

E(n, k, p) = max E
[(∑n

j=1 c̃j − k
)+]

s.t.
∑

c∈C:ci=1

P(c) = p, ∀i ∈ [n],∑
c∈C:ci=1, cj=1

P(c) = p2, ∀i, j ∈ Kn,∑
c∈C

P(c) = 1,

P(c) ≥ 0 ∀c ∈ C

(2.50)

The next theorem provides the tight upper bound E(n, k, p) in closed-form.

Theorem 7. Consider n pairwise independent Bernoulli random variables with identical prob-
abilities p ∈ (0, 1). Then, the tight upper bound E(n, k, p) admits the following closed-form
expression:



Chapter 2. Bounds with Pairwise Independence 57

E(n, k, p) =



np

[
1− k

(
2j − (n− 1)p

j(j + 1)

)]
, k <

1 + (n− 1)p

2
, j = d(n− 1)pe, case (a)

n(n− 1)p2 + (j − 1)(j − 2np)

2(2(k − j) + 1)
,


1 + (n− 1)p

2
≤ k ≤ n+ (n− 1)p

2
,

j = k − b
√

(k − np)2 + np(1− p)c,

case (b)

(n− k)
[
n(n− 1)p2 + (j − 1)(j − 2np)

](
(n− j)2 + (n− j)

) ,
,

k >
n+ (n− 1)p

2
, j = d(n− 1)pe case (c)

Proof. The proof of tightness along with the extremal distribution that attains this bound
for any given (n, k, p) triplet is relegated to Appendix A.

Corollary 3. The tight lower bound corresponding to the upper bound in Theorem 7 is given
by:

E(n, k, p) =


np− k, k < η, case (a)

p [(n− 1)p− (k − 1)] , k = η, case (b)

0, k > η, case (c).

(2.51)

where η = d(n− 1)pe and

E(n, k, p) = min
θ∈Θpw

Eθ
[(∑n

j=1 c̃j − k
)+
]
, ∀k ∈ [0, n]

with n pairwise independent Bernoulli random variables having identical probabilities p ∈
(0, 1).

Proof. The proof idea is similar to that of the upper bound in Theorem 7 and involves
using the aggregated linear program formulation proposed by Boros and Prékopa (1989)
and Prékopa (1990a) to identify primal and dual feasible bases consistent with the given
assumptions and which attain the given bound. Although the proof is much simpler
than that of the upper bound, we omit it here for the sake of brevity.

Note that the tight bound in (2.51) reduces to the Jensen (1906) bound max (S1 − k, 0)
(where S1 = np) in cases (a) and (c) while providing better bounds close to the mean
np in case (b). Recall that with univariate marginal information alone, we proved in
Section 3.4.2 that the Jensen (1906) bound is the tightest lower bound for the expected
stop-loss function. In other words, with identical marginals, while pairwise indepen-
dence does not improve the univariate lower bounds in general, it adds value by tight-
ening the bounds around the mean which could be of independent interest in itself.

Connection to earlier work: Expected stop-loss functions like that in (2.50) involv-
ing random variables with given univariate and bivariate probability information have
been studied in the context of several applications in the literature. For example, such
bounds can be used to compute the maximum expected mean absolute deviation of a
symmetric random walk over n pairwise independent steps (Narayanan, 2019). Under
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assumptions of limited moment information, Courtois and Denuit (2009) provide the
best upper and lower bounds on expected stop-loss functions where the first and sec-
ond moments µ1 = S1, µ2 = 2S2 + S1 are known, with applications in ruin probability
and stochastic modeling for dynamic mortality. More recently, Ninh, Hu, and Allen
(2019) investigated discrete demand newsvendor problems under the same assump-
tions, where the minimum expected profit is related to maximizing an expected stop-
loss function. While the proof of Courtois and Denuit (2009) uses algebraic techniques
involving existence of quadratic polynomials, Ninh, Hu, and Allen (2019) first iden-
tify the optimal basis structure of the aggregated linear program in Boros and Prékopa
(1989) for the stop-loss objective function and subsequently use quadratic polynomials
to derive closed-form expressions (in terms of µ1, µ2) that exactly reduce to the bounds
in Theorem 7 and Corollary 3 under assumption of identical pairwise independent
variables. However, although the best upper and lower bounds under the given as-
sumptions of univariate and bivariate aggregated information have been derived in
these papers, their connection to pairwise independence and preservation of tightness
with identical pairwise independent variables has not been established to the best of
our knowledge. Our contribution also lies in providing extremal distributions that at-
tain the bound for any input instance, i.e., our proof of Theorem 7 identifies the exact
conditions on n, k, p under which a particular basis becomes optimal.

Extension to t-wise independence: It is straightforward to extend Proposition 5 to

expected stop-loss functions E
[(∑n

j=1 c̃j − k
)+], and thus the tight upper and lower

bounds are computable as the optimal value of the aggregated linear program (2.47)
with the expected stop-loss objective function instead of the tail probability.
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Chapter 3

Bounds with Extremal Dependence

In this chapter, we consider computation of bounds on the tail probability and expecta-
tion of sums of Bernoulli random variables under assumptions of extremal dependence
among the variables. The only information known is the univariate marginal probabil-
ities of each variable. The bounds are “extremal” since they are valid across all joint
distributions with the given marginals. Compact linear programs are formulated to
compute these bounds, the optimal solution to which, can be captured in a closed-form
expression in some cases. While some of these results are previously established in
the literature, we provide alternative proofs harnessing tools from linear programming
and extend the results to variants of standard problems with useful applications. The
results from the Bernoulli case are extended to random variables with discrete support
where useful upper bounds on the tail probability are derived.

3.1 Tail probability bounds on sums of Bernoulli random vari-
ables

Sums of random variables have been interesting objects of study in probability and ap-
plied fields such as quantitative risk measurement in finance and insurance. A relevant
problem is to determine tight bounds for the tail distribution function of sums of ran-
dom variables and more specifically for sums of Bernoulli random variables given their
marginal probabilities. For example, an insurer is interested to obtain tight bounds for
the probability that the number of claims incurred is at least k out of n. In finance and
risk management, a portfolio manager would be interested to compute the tail risk of
the joint portfolio of a random risk vector given their marginal distribution functions
(see Rüschendorf, Ludger, 2013; Wang, Peng, and Yang, 2013, and references therein).
More recently Blanchet et al. (2021) provide bounds on quantiles of an aggregate risk
with given marginal distributions but unspecified correlation structure which are di-
rectly related to the tail probability bounds. In the context of network reliability, it is of
interest to compute the probability that at least k out of n components are functioning
in a system (see Zemel, 1982). In inventory management applications, decision makers
would like to hedge against extremal scenarios by computing the probability that at
least k out of n outlets of a company experience stock-outs. Another interesting appli-
cation is in hypothesis testing (Rüger, 1978; Rüger, 1981; Morgenstern, 1980). Given n
tests, with level of significance αi, i ∈ [n], computing the level of significance of the
combined test that at least k out of n tests are rejected, can be of practical value. The
underlying random variables in all of the above and several other applications can nat-
urally be represented as sums of Bernoulli random variables. Additionally, as we will
see in Table 3.1, the tractability of bounds involving Bernoulli random variables makes
them interesting objects of study. In this section we are interested in computing tail
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probability bounds on sums of extremally dependent Bernoulli random variables, i.e.,
with no specified correlation between the variables.

Preliminaries:
Throughout this chapter, [n] denotes the set of indices {1, 2, . . . , n} for n ≥ 2 and [i, j] =
{i, i + 1, . . . , j − 1, j} for given integers i < j. Let c̃ be an n dimensional multivariate
Bernoulli random variable with a fixed univariate marginal vector pwhere P(c̃i = 1) =
pi, ∀i ∈ [n]. Denote by C = {0, 1}n, the set of realizations of c̃, by Θ({0, 1}n), the set
of all probability distributions supported on C and by Θu the ambiguity set of joint
distributions supported on C while consistent with the given univariate information as
defined in (2.1.1).
We denote the tight upper bound on the probability that at least k out of n Bernoulli
events occur by:

P u(n, k,p) = max
θ∈Θu

Pθ(
n∑
i=1

c̃i ≥ k), ∀k ∈ [n]

Note thatP u(n, k,p) can be computed as the optimal value of the following exponential-
sized linear program first proposed by Hailperin (1965b):

P u(n, k,p) = max
∑

c∈C:
∑n
i=1 ci≥k

P(c)

s.t.
∑

c∈C:ci=1

P(c) = pi, ∀i ∈ [n],∑
c∈C

P(c) = 1,

P(c) ≥ 0 ∀c ∈ C

(3.1)

We next summarize some known hardness results for computing tail probabilities on
sums of variables with arbitrary support, which shows that the Bernoulli nature of
variables plays a significant role in efficiently computing tail probability bounds such
as P u(n, k,p).
Computational complexity: Table 3.1 displays the known complexity results of com-
puting tail probability bounds on sums of random variables, for variables with different
types of support and dependency conditions. When the variables ci, i ∈ [n] assume ar-
bitrary support, it is known that computing the tail probability (with mutual indepen-
dence) and tight bounds (with extremal dependence) are #P-hard (Kleinberg, Rabani,
and Tardos, 2000) and NP-hard (Kleinberg, Rabani, and Tardos, 2000) respectively. In
fact, even when each random variable ci, i ∈ [n] is restricted to assume just two possi-
ble values 0 and ai, where ai is rational, computing the tail probability and extremal tail
bounds is #P-hard and NP-hard respectively (see Theorem 1.1.1 and 2.6.1 in Natara-
jan, 2021). However, when the variables are Bernoulli with fixed marginal probabilities,
the independent tail probability (attained by the Poisson binomial distribution) is com-
putable in polynomial time using dynamic programming recursion while the tightest
bound with extremal dependence is efficiently computable in a closed-form (Rüger,
1978; Morgenstern, 1980) or by providing a polynomial time algorithm as in Zemel
(1982).
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Computational
complexity

Independence
(tail probability)

Dependence
(extremal bounds)

Arbitrary Support

#P-hard

(Kleinberg, Rabani, and Tardos,
2000)

NP-Hard

(Kreinovich and Ferson, 2006)

Binary Support
with p ∈ [0, 1]n

Easy

Poisson Binomial (n,p)

Polynomial time solvable

(Rüger, 1978; Morgenstern, 1980;
Zemel, 1982)

TABLE 3.1: Computational complexity of computing tail probability bounds on sums of
random variables

More general objective functions: It is interesting to note that for more involved ob-
jective functions, such as tail probability functions of linear combinations of extremally
dependent Bernoulli random variables, tight bounds can be computed in polynomial
time under special circumstances. More generally, tight upper bounds of the form

max
θ∈Θu

Pθ(Z(c̃) ≥ k), ∀k ∈ [n]

where
Z(c̃) = max c̃′x

s.t. x ∈ X ⊆ {0, 1}n, (3.2)

is the optimal value of a combinatorial optimization problem (that is assumed to be effi-
ciently computable), have been considered in Padmanabhan et al., 2021. These bounds
have been shown to be weakly NP-hard to compute by providing a pseudopolyno-
mial time algorithm for compact 0/1 V-polytopes, i.e., when the extreme points of the
convex hull of the set X are explicitly given as a set of finite points. Note that by set-
ting X = {1n}, where 1n is the vector of all ones, we retrieve the special case of sums
of random variables. While these results hold for discrete random variables beyond
Bernoulli variables, it is important to note that they cannot be generalized to arbitrary
V-polytopes, since even with xi ∈ {0, ai}, ai ∈ Q, ∀i ∈ [n] (where Q is the set of ra-
tionals) and a Bernoulli random vector c, cixi would be a two-point random variable
with support {0, ai} and the earlier mentioned NP-hardness results of Kreinovich and
Ferson, 2006 would apply. For pairwise independent Bernoulli random variables and
compact 0/1 V-polytopes, to the best of our knowledge, it is not clear if these bounds
are efficiently computable.

In this section, we first derive a compact linear program in Theorem 8, which effi-
ciently computes the tightest bound P u(n, k,p) and subsequently provide an alternate
proof of the closed-form solution provided in Rüger (1978) using this compact linear
program. Further, we extend our results to random variables with discrete support in
Section 3.2 and weighted tail probability functions in Section 3.3.
Note that an optimal solution to the linear program (3.1) must exist since it cannot be
unbounded (the objective is a tail probability function) and its feasible region is non-
empty. It is evident that there are exponential number of decision variables (P(c), c ∈ C)
in (3.1) and thus the linear program quickly becomes computationally intractable with
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increase in number of random variables n. Rüger (1978) proves the equivalence of
(3.1) to a smaller linear program maximizing P(

∑n
i=1 c̃i = k) instead of P(

∑n
i=1 c̃i ≥ k)

and relaxing the equality of univariate probabilities to upper bounds on the univariate
probabilities, i.e.,

P (c̃i = 1) ≤ pi, ∀i ∈ [n].

This reduced and relaxed linear formulation still has
(
n
k

)
decision variables which could

potentially be huge when k is close to n/2. The following theorem however, shows the
equivalence of (3.1) to a much simpler compact linear program with O (n) variables
and constraints, which can thus efficiently compute P u(n, k,p).

3.1.1 Compact linear program and primal proof of correctness

Theorem 8. The exponential size linear program in (3.1) is equivalent to the following compact
linear program:

P u(n, k,p) = max y0

s.t. 0 ≤ y0 − yi ≤ 1− pi, ∀i ∈ [n],

0 ≤ yi ≤ pi, ∀i ∈ [n],

n∑
i=1

yi ≥ ky0

(3.3)

Proof. Consider the dual of the exponential-sized linear program (3.1)

min

n∑
i=1

λipi + λ0

s.t.
n∑
i=1

λici + λ0 ≥ 1∑n
i=1 ci≥k, ∀c ∈ C,

λi, free ∀i ∈ [n],

λ0 free

(3.4)

where 1 is the indicator function. The dual (3.4) has 2n constraints, which can be split
into two parts as follows:

n∑
i=1

λici + λ0 ≥ 0 ∀c ∈ C (3.5a)

n∑
i=1

λici + λ0 ≥ 1 ∀c ∈ C :

n∑
i=1

ci ≥ k (3.5b)

We now show how both the above constraint sets can be replaced by equivalent polynomial-
sized constraint sets by converting them into optimization problems with {ci, i ∈ [n]}
as decision variables for fixed {λ0, λi, i ∈ [n]}.
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The first constraint set (3.5a) can be written as:

λ0 +

{
min

n∑
i=1

λici : c ∈ C

}
︸ ︷︷ ︸

Sep1(λ)

≥ 0

≡ λ0 +

{
min

n∑
i=1

λici : 0 ≤ ci ≤ 1,∀i ∈ [n]

}
≥ 0

(3.6)

where the equivalence follows from the fact that the linear program relaxation admits
integer extreme points due to the totally unimodular structure of the constraint set.
The second constraint set (3.5b) can be similarly transformed as:

λ0 +

{
min

n∑
i=1

λici :
n∑
i=1

ci ≥ k, c ∈ C

}
︸ ︷︷ ︸

Sep2(λ)

≥ 0

≡ λ0 +

{
min

n∑
i=1

λici :

n∑
i=1

ci ≥ k, 0 ≤ ci ≤ 1, ∀i ∈ [n]

}
≥ 0

(3.7)

where the equivalence persists due to the totally unimodular structure of the constraint
set. The two separation problems indicated by Sep1(λ), Sep2(λ) in (3.6) and (3.7) are
thus transformed into efficiently solvable linear programs with integer polytopes. As a
consequence of the equivalence of separation and optimization (Grötschel, Lovász, and
Schrijver, 2012), the original large-sized dual problem (3.4) is also efficiently solvable.
We now proceed to derive the precise compact linear programming formulation that is
equivalent to the original large-sized primal problem (3.1).
Dualizing (3.6) gives us

λ0 +

{
max

n∑
i=1

wi : wi ≤ 0, wi ≤ λi, ∀i ∈ [n]

}
≥ 0 (3.8)

Since we only need a single instance {wi, i ∈ [n]} to satisfy (3.8) by which (3.6) is au-
tomatically satisfied due to weak duality, we can replace the constraint set (3.5a) by:{

λ0 +
n∑
i=1

wi ≥ 0, wi ≤ λi, wi ≤ 0, ∀i ∈ [n]

}
(3.9)

Dualizing (3.7) in a similar manner leads to

λ0 +

{
max kv0 +

n∑
i=1

vi : v0 + vi ≤ λi, vi ≤ 0, v0 ≥ 0, ∀i ∈ [n]

}
≥ 1 (3.10)

and the constraint set (3.5b) can be replaced by

{
λ0 + kv0 +

n∑
i=1

vi − 1 ≥ 0, v0 + vi ≤ λi, vi ≤ 0, v0 ≥ 0, ∀i ∈ [n]

}
(3.11)
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Replacing both constraint sets (3.5a)and (3.5b) by (3.9) and (3.11) respectively, the trans-
formed polynomial-sized version of the dual (3.4) is:

min
∑n

i=1 λipi + λ0

s.t. λ0 −
∑n

i=1wi ≥ 0,

λ0 + kv0 −
∑n

i=1 vi − 1 ≥ 0,

λi + wi ≥ 0, ∀i ∈ [n],

λi + vi − v0 ≥ 0, ∀i ∈ [n],

wi ≥ 0, ∀i ∈ [n],

vi ≥ 0, ∀i ∈ [n],

v0 ≥ 0

(3.12)

This transformed dual hasO(n) constraints as opposed toO(2n) constraints in the orig-
inal dual. Finally, we dualize (3.12) to get a polynomial size primal equivalent of (3.1)
as follows:

max y0

s.t. x0 + y0 = 1,

xi + yi = pi, ∀i ∈ [n],

x0 − xi ≥ 0, ∀i ∈ [n],

y0 − yi ≥ 0, ∀i ∈ [n],∑n
i=1 yi ≥ ky0

xi ≥ 0, ∀i ∈ [n],
yi ≥ 0, ∀i ∈ [n],
x0 ≥ 0,
y0 ≥ 0

(3.13)

where xi, yi, i ∈ [n] are the primal variables corresponding to the constraint sets in
(3.12), while x0, y0 are the primal variables corresponding to the first and second single
constraints. It can be observed that by eliminating x0, xi, (3.13) can be reduced to the
compact linear program (3.3) which has only O(n) decision variables and O(n) con-
straints and the result is proved.

Figure 3.1 summarizes the primal-dual transformations used in our proof. As noted
earlier, an optimal solution to (3.1) must exist and thus by strong duality (3.4) also has
an optimal solution. The duals (3.4) and (3.12) are equivalent since we have trans-
formed the former into the latter by finding an equivalent facet defining constraint
set of polynomial size without modifying the feasible region. Further, (3.12) and (3.3)
have optimal solutions by strong duality and lastly the large-sized primal (3.3) and the
compact primal (3.1) are equivalent and share the same optimal solution by dint of the
previous steps.
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Large-
sized

Primal
3.1
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Dual
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Dual
3.12

Compact
Primal

3.3

FIGURE 3.1: Equivalence of the large-sized and compact linear programs

Connection to earlier work: We note that other compact linear programming for-
mulations to compute tail probability bounds on sums of Bernoulli random variables
considered in this section have been proposed in the literature. These formulations
are designed for partially aggregated information assumptions where the first m par-

tial binomial moments of the form Sjm = E
[
c̃j

(∑
{i1,i2,...,im−1}∈[n]\j

c̃i1 c̃i2 . . . c̃im−1

)]
(∀j ∈ [n], m ≤ n) are assumed to be known. For example, Qiu, Ahmed, and Dey
(2016) extend the work of Prékopa and Gao (2005) to compute max P(

∑n
i=1 c̃i ≥ k)

for any k ∈ [n], assuming knowledge of first m partial binomial moments Sjm by con-
structing a compact linear programming formulation. In parallel work, Yang, Alajaji,
and Takahara (2016) provide the exact same compact formulation as Qiu, Ahmed, and
Dey (2016) but only for k = 1 (union bound). Even though designed for partially aggre-
gated probability information, both these formulations can be shown to achieve the tight
bound P u(n, k,p) for m = 1, when the first-order partial binomial moments Sj1 equal
the univariate probabilities pj (∀j ∈ [n]). However, these formulations even though
polynomial-sized, use O(n2) variables and constraints as opposed to O(n) variables
and constraints in our compact linear program (3.3). Thus, our compact formulation
scales more efficiently with the number of variables n unlike other known compact
formulations.

Primal proof of correctness

We next provide a direct proof of equivalence of the primal formulations in Figure 3.1,
i.e., the large-sized linear program (3.1) and the compact linear program (3.3) without
going through the dual formulations and also interpret the decision variables of the
compact primal formulation in terms of the probabilities from a feasible joint distribu-
tion of the large-sized primal formulation.

Proposition 7. The large-sized primal linear program (3.1) is equivalent to the compact primal
linear program (3.3), where for any extremal distribution θ? ∈ Θu of the large-sized linear
program and any k ∈ [n], the corresponding optimal solution (y0, y1, . . . , yn) of the compact
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linear program satisfies

y0 = Pθ? (
∑n

t=1 c̃t ≥ k)

yi = Pθ? (
∑n

t=1 c̃t ≥ k, c̃i = 1) , ∀i ∈ [n]
(3.14)

Proof. Denote the optimal value of the compact linear program in (3.3) by P cu(n, k,p).

Step (1): P (n, k, p) ≤ P
c
u(n, k,p) Given a feasible solution Pθ(c), ∀c ∈ C of the large-

sized primal linear program (3.1) for some distribution θ ∈ Θu, construct a feasible so-
lution of the compact linear program (3.3) by aggregating the probabilities as follows:

y0 =
∑

Pθ(c)
c∈C:

∑n
t=1 ct≥k

, yi =
∑

Pθ(c)
c∈C:

∑n
t=1 ct≥k, ci=1

(3.15)

Using the fact that Pθ(c̃i = 1) = pi, ∀i ∈ [n], it is straightforward to see that the decision
variables in (3.15) satisfy the first two constraint sets in (3.3), while the third constraint
is satisfied as follows:

n∑
i=1

yi
y0

=
n∑
i=1

Pθ

(
c̃i = 1

∣∣∣∣ n∑
t=1

c̃t ≥ k

)
≥ k

which is true since given that the sum of n Bernoulli random variables is at least k, there
must be at least k out of them that equal one. Lastly, from the interpretation of y0 in
(3.15), it is clear that the objective function values of the two linear programs coincide.
Step (2): P (n, k, p) ≥ P cu(n, k,p)
Given any feasible solution (y0, y1, . . . , yn) of the compact linear program (3.3), the vec-
tor

y =

(
y1

y0
,
y2

y0
, . . . ,

yn
y0

)
must lie in the n-dimensional hypercube since yi ≤ y0, ∀i ∈ [n]. Additionally, from
the last constraint in (3.3), we have

∑n
i=1 (yi/y0) ≥ k and hence y can be written as a

convex combination of the extreme points of the sliced hypercube [0, 1]n∩(
∑n

i=1 ci ≥ k)
as follows:

y =
∑
c∈Ck

λcc, where
∑
c∈Ck

λc = 1 (3.16)

and Ck = {c ∈ C :
∑n

i=1 ci ≥ k} ⊂ {0, 1}n is the set of realizations of c where each real-
ization adds up to at least k for all k ∈ [n]. We now construct a probability distribution
supported on Ck where

Pθ(c) = λcy0 ∀c ∈ Ck
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such that the constraints in (3.1) are satisfied as follows:∑
c∈Ck,ci=1

Pθ(c) = y0

( ∑
c∈Ck,ci=1

λc

)
∀i ∈ [n]

= yi ∀i ∈ [n]

and
∑
c∈Ck

Pθ(c) = y0

( ∑
c∈Ck

λc

)
= y0

(3.17)

where the second equality follows from (3.16) since:∑
c∈Ck,ci=1

λc =
yi
y0
, ∀i ∈ [n]

while the last inequality is due to the λc, c ∈ Ck being the coefficients of a convex com-
bination. Note that from (3.17), we retrieve the same interpretation for (y0, y1, . . . , yn)
as in (3.15) and the objective function values of the two linear programs coincide.
Since yi ≤ pi,∀i ∈ [n] for any feasible solution to (3.3), the remaining mass pi − yi
can be distributed among the scenarios c :

∑n
t=1 ct < k, ci = 1 for all i ∈ [n] such

that Pθ(c̃i = 1) = pi, ∀i ∈ [n]. Thus a feasible solution of the large-size linear pro-
gram attaining the same objective as the compact formulation exists and the result is
proved.

For the simple case of univariate tail probability bounds considered in this section,
the tightest bound P u(n, k,p) admits a closed-form expression that has been derived
in Rüger (1978). However, we next provide an alternative proof of tightness of this
closed-form bound using the compact linear program (3.3) derived in this section.

3.1.2 Closed-form expression for tight bounds

Theorem 9. (Rüger, 1978) Sort the probabilities in increasing value as 0 ≤ p1 ≤ p2 ≤ . . . ≤
pn ≤ 1. Then,

P u(n, k,p) = min

(
min

1≤`≤k

∑n−k+`
i=1 pi
`

, 1

)
, 1 ≤ k ≤ n (3.18)
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Proof. Consider the dual of the linear program (3.3)

P u(n, k,p) = min
n∑
i=1

wipi +
n∑
i=1

vi(1− pi)

s.t.
n∑
i=1

vi −
n∑
i=1

ui + kλ− 1 ≥ 0

ui − vi + wi − λ ≥ 0, ∀i ∈ [n],

ui ≥ 0, ∀i ∈ [n],

vi ≥ 0, ∀i ∈ [n],

wi ≥ 0, ∀i ∈ [n],

λ ≥ 0

(3.19)

Let q = min
1≤`≤k

∑n−k+`
i=1 pi
`

and `∗ = argmin
1≤`≤k

∑n−k+`
i=1 pi
`

. We ignore the trivial case of k = 0

when the bound is one and consider k ∈ [n] henceforth. We next consider two possible
cases when the bound in (3.18) is either non-trivial or trivially one as follows:

i) Non-trivial bound (q < 1):
When q < 1, we consider two cases, i.e., 1 ≤ `∗ < k and `∗ = k.

(a) 1 ≤ `∗ < k :

Consider the following dual feasible solution of (3.19):

ui =

{
0, 1 ≤ i ≤ n− k + `∗

1
`∗ , n− k + `∗ + 1 ≤ i ≤ n

,

vi = 0, ∀i ∈ [n]

wi =

{
1
`∗ , 1 ≤ i ≤ n− k + `∗

0, n− k + `∗ + 1 ≤ i ≤ n
,

λ = 1
`∗

(3.20)

By complementary slackness of wi, ui we have respectively

yi = pi, 1 ≤ i ≤ n− k + `∗

yi = y0, n− k + `∗ + 1 ≤ i ≤ n
(3.21)
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By complementary slackness of λ, we have

n∑
i=1

yi = ky0

n−k+`∗∑
i=1

pi = ky0 −
n∑

i=n−k+`∗+1

y0

y0 =

∑n−k+`∗

i=1 pi
`∗

= q < 1

Consequently, it can be observed that the proposed dual feasible solution in (3.20)
satisfies the constraint set y0 − yi ≤ 1 − pi, i ∈ [n] in the compact linear pro-
gram (3.3). We will next show that the solution also satisfies the remaining two
constraint sets in (3.3), i.e.,

y0 − yi ≥ 0, ∀i ∈ [n]

0 ≤ yi ≤ pi, ∀i ∈ [n]

Using the solution from (3.21), we thus need to prove that:

y0 ≥ pi, 1 ≤ i ≤ n− k + `∗

y0 ≤ pi, n− k + `∗ + 1 ≤ i ≤ n

Since the marginal probabilities pi, i ∈ [n] are arranged in increasing order, it
suffices to show that

pn−k+`∗ ≤ y0 ≤ pn−k+`∗+1

i) y0 ≤ pn−k+`∗+1 :

Since `∗ is the minimizer of q and y0 = q, we have:∑n−k+`∗

i=1 pi
`∗

≤
∑n−k+`∗+1

i=1 pi
`∗ + 1

=

∑n−k+`∗

i=1 pi + pn−k+`∗+1

`∗ + 1∑n−k+`∗

i=1 pi
`∗

≤ pn−k+`∗+1

y0 ≤ pn−k+`∗+1

ii) y0 ≥ pn−k+`∗ :

Firstly, if `∗ = 1, we have

y0 =

∑n−k+1
i=1 pi

1
=

n−k+1∑
i=1

pi ≥ pn−k+1
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If 1 < `∗ < k, since `∗ is the minimizer of q and y0 = q, we have:∑n−k+`∗

i=1 pi
`∗

≤
∑n−k+`∗−1

i=1 pi
`∗ − 1

=

∑n−k+`∗

i=1 pi − p(n−k+`∗)

`∗ − 1∑n−k+`∗

i=1 pi
`∗

≥ p(n−k+`∗)

y0 ≥ pn−k+`∗

Hence all constraints are satisfied and both the primal and dual attain the sug-
gested optimal value q.

(b) Special Case (`∗ = k) :
Consider the following dual feasible solution:

ui = vi = 0, ∀i ∈ [n], wi =
1

k
, ∀i ∈ [n], λ =

1

k

By complementary slackness of wi, i ∈ [n] we have

yi = pi, ∀i ∈ [n]

and by complementary slackness of λ, we have

n∑
i=1

yi = ky0 or y0 =

∑n
i=1 pi
k

= q < 1 (3.22)

Consequently, the two constraint sets

y0 − yi ≤ 1− pi, ∀i ∈ [n]

0 ≤ yi ≤ pi, ∀i ∈ [n]

are satisfied by the above feasible solution. It remains to show that

y0 ≥ yi, ∀i ∈ [n]

or y0 ≥ pi, ∀i ∈ [n]

It suffices to prove that y0 ≥ pn. Since `∗ = k, by definition of `∗ and y0 from (3.22)
we have: ∑n

i=1 pi
k

=

∑n−k+k
i=1 pi
k

≤
∑n−k+k−1

i=1 pi
k − 1

≤
∑n

i=1 pi − pn
k − 1

or
∑n

i=1 pi
k

≥ pn

y0 ≥ pn
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Hence we have proved that when q < 1, there exist primal and dual feasible solutions
for all possible values of `∗ (1 ≤ `∗ ≤ k , k ∈ [n]) that attain the non-trivial bound q,
which is thus optimal.

ii) Trivial bound (q ≥ 1):
When q > 1, consider the following dual feasible solution:

ui = 0, ∀i ∈ [n], vi = wi =
1

n
, ∀i ∈ [n], λ = 0

By complementary slackness of vi, wi we have

y0 − yi = 1− pi, ∀i ∈ [n]
yi = pi, ∀i ∈ [n]

Then y0 = 1 and since `∗ is the minimizer of q and q ≥ 1, we have:

n∑
i=1

yi =
n∑
i=1

pi

= k

∑n−k+k
i=1 pi
k

≥ k

∑n−k+`∗

i=1 pi
`∗

= kq

≥ ky0

Hence all constraints of the compact primal (3.3) are satisfied and both the primal and
dual attain the bound of one which is thus optimal when q ≥ 1.

Summarizing the results of the trivial and non-trivial bounds, we have

P u(n, k,p) = min(q, 1)

which is precisely the tight bound in (3.18).

Connection to earlier work: We note that the closed-form bound in (3.18) was first
derived by Rüger (1978) in the context of hypothesis testing while Morgenstern (1980)
subsequently provided a simpler proof of the result. However, it appears that these
works are largely unknown to the academic community due to their being published
in the German language journal Metrica (the only citations that we are aware of are
in Rüschendorf (1991) and Rüschendorf, Ludger (2013)). Several other closed-form
bounds on the tail probability of sums of random variables with known marginal dis-
tribution functions have been proposed in the literature. While Markov bounds are the
earliest known, standard bounds and dual bounds have been more recently proposed
(see chapter 4 of Rüschendorf, Ludger, 2013, and the references therein for a detailed
review). While none of these bounds are tight in general, the dual bounds can be shown
to reduce to the Rüger (1978) bound when the variables are Bernoulli. Note that Rüger
(1978) bound reduces to the Markov bound with identical marginals and the Fréchet
(1935) union and intersection bounds when k = 1 and k = n respectively.
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3.1.3 Lower bounds on tail probability

We now extend the results of the previous section to provide closed-form lower bounds
on the tail probability of sums of Bernoulli variables. Denote by P u(n, k,p) the tight
lower bound on the probability that at least k out of n Bernoulli events occur, i.e.,

P u(n, k,p) = min
θ∈Θu

Pθ(
n∑
i=1

c̃i ≥ k), ∀k ∈ [n]

Corollary 4. The tight lower bound P u(n, k,p) can be computed as the optimal value of the
following compact linear program:

P u(n, k,p) = min y0

s.t. 0 ≤ y0 − yi ≤ 1− pi, ∀i ∈ [n],

0 ≤ yi ≤ pi, ∀i ∈ [n],

n∑
i=1

yi ≥ ky0

(3.23)

Proof. Note that except for the minimization instead of maximization, the compact lin-
ear program (3.23) is exactly identical to (3.3) which was used to compute the upper
bound. The dual indicator constraint for the lower bound would be reversed and of
the form:

n∑
i=1

λici + λ0 ≤ 1∑n
i=1 ci≥k, ∀c ∈ C,

which can be equivalently written as:

n∑
i=1

λici + λ0 ≤ 0 ∀c ∈ C :

n∑
i=1

ci ≤ k (3.24a)

n∑
i=1

λici + λ0 ≤ 1 ∀c ∈ C (3.24b)

The proof then easily follows by similar techniques used in the derivation of (3.3). We
omit further details here for the sake of brevity.

Corollary 5. Sort the probabilities in increasing value as 0 ≤ p1 ≤ p2 ≤ . . . ≤ pn ≤ 1. Then,

P u(n, k,p) = max

(
max

1≤`≤n−k+1

∑k−1+`
i=1 pn−i+1 − (k − 1)

`
, 0

)
, ∀k ∈ [n] (3.25)

Proof. We first define the tight upper bound on the probability of at most k out of n
Bernoulli events occurring as

Qu(n, k,p) = max
θ∈Θu

Pθ(
n∑
i=1

c̃i ≤ k), ∀k ∈ [0, n]
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Define a complementary Bernoulli random variable di = 1 − ci, i ∈ [n]. Then for
k ∈ [0, n],

Qu(n, k,p) = max
θ∈Θu

Pθ(
∑n

i=1 c̃i ≤ k),

= max
θ∈Θcu

P(
∑n

i=1 d̃i ≥ n− k)

= P u(n, n− k, q)

where Θc
u is the complementary ambiguity set of distributions such that

Θc
u = {θ ∈ Θ ({0, 1}n) : Pθ (s) = Pθu (sc) , ∀s ∈ C, ∀θu ∈ Θu}

and sc is the complementary scenario obtained by flipping the ones and zeros in s
which thus satisfies Pθ(d̃i = 1) = 1 − pi, i ∈ [n] for any feasible distribution θ and q is
the marginal probability vector of the complementary Bernoulli random vector d such
that it is arranged in increasing order, i.e., qi = 1 − pn−i+1, i ∈ [n]. Now using the fact
that

P u(n, k,p) = 1−Qu(n, k − 1,p), ∀k ∈ [n],

= 1− P u(n, n− k + 1, q), ∀k ∈ [n]

and the closed-form expression from (3.18), the tight lower bound in (3.25) follows.
Note that this lower bound has been derived in Rüger (1981) as a follow-up to the
upper bounds derived in Rüger (1978).

Similarly, the lower bound corresponding to Qu(n, k,p) can be computed as

Q
u
(n, k,p) = min

θ∈Θu
Pθ(
∑n

i=1 c̃i ≤ k), ∀k ∈ [0, n]

= 1− P u(n, k + 1,p), ∀k ∈ [0, n− 1],

where we ignore k = n since the bound is trivially one when k = n. We summarize the
four tight bounds below (assuming the probabilities pi are sorted in increasing order as
before):

P u(n, k,p) =

min

(
min

1≤`≤k

∑n−k+`
i=1 pi
`

, 1

)
, 1 ≤ k ≤ n

1, k = 0

P u(n, k,p) =

max

(
max

1≤`≤n−k+1

∑k−1+`
i=1 pn−i+1 − k + 1

`
, 0

)
, 1 ≤ k ≤ n

1, k = 0

Qu(n, k,p) =

min

(
min

1≤`≤n−k

∑k+`
i=1 (1− pn−i+1)

`
, 1

)
, 0 ≤ k ≤ n− 1

1, k = n

Q
u
(n, k,p) =

max

(
max

1≤`≤k+1

`− (
∑n−k−1+`

i=1 pi)

`
, 0

)
, 0 ≤ k ≤ n− 1

1, k = n
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We next demonstrate an application of the closed-form expression derived in Theorem
9 to a special case of star-shaped marginals when the marginal information for only one
root variable is known while the bivariate information of all other variables is known
with respect to this root variable, forming a star structure.

3.1.4 Application to star-shaped system

Consider an n+1 dimensional Bernoulli random vector c̃ = [c̃i], i ∈ [0, n] for which we
only know the univariate marginal distribution for one variable say c̃0 (which we shall
call as the root variable) i.e. P(c̃0 = 1) = q0 > 0. Further suppose that for the remaining
variables, we are given the bivariate probabilities with respect to the root variable i.e.

P(c̃i = 1, c̃0 = 0) = pi0, ∀i ∈ [n]

P(c̃i = 1, c̃0 = 1) = pi1, ∀i ∈ [n]

This bivariate marginal structure resembles that of a star-shaped system which has been
studied in the works of Rüschendorf (1991), Embrechts and Puccetti (2010), and Puc-
cetti and Rüschendorf (2012).

Root
variable

c0

q0

c1 c2 ci
. . . . . . . . . . . .

cn
. . . . . . . . . . . .

p 1
0
, p

11

p 2
0
, p

21

p
i0 , p

i1

p
n0 , p

n1

FIGURE 3.2: Star-shaped marginal structure

Let p0 and p1 be the vectors of bivariate probabilities pi0 and pi1 respectively for
i ∈ [n]. Denote by C? = {0, 1}n+1, the set of realizations of c̃ and by P ?b(n, k, q0,p0,p1)
the optimal value of the following exponential-sized star-structured linear program:

P
?
b(n, k, q0,p0,p1) = max P

( n∑
i=0

c̃i ≥ k
)

s.t.
∑

c∈C?:c0=1

P(c) = q0∑
c∈C?:ci=1

P(c) = pi0 + pi1 ∀i ∈ [n]∑
c∈C?:c0=1,ci=1

P(c) = pi1, ∀i ∈ [n]∑
c∈C?

P(c) = 1

P(c) ≥ 0 ∀c ∈ C?

(3.26)
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Define two sets of Bernoulli random variables {αi, i ∈ [n]} and {βi, i ∈ [n]} such that

P(αi = 1) = qi0, ∀i ∈ [n]

P(βi = 1) = qi1, ∀i ∈ [n]

where qi0, qi1 are the conditional probabilities

qi0 = P(c̃i = 1|c̃0 = 0) =
pi0

(1− q0)
, ∀i ∈ [n]

qi1 = P(c̃i = 1|c̃0 = 1) =
pi1
q0
, ∀i ∈ [n]

The correlation between the n variables αi and βi is uspecified and thus we consider
the following two regular univariate linear programs (similar to (3.1)) with αi, βi i ∈ [n]
as random variables respectively:

P u(n, k, q0) = max
∑

α∈C:
∑n
i=1 αi≥k

P(α)

s.t
∑

α∈C:αi=1

P(α) = qi0, ∀i ∈ [n],∑
α∈C

P(α) = 1,

P(α) ≥ 0

(3.27)

and

P u(n, k, q1) = max
∑

β∈C:
∑n
i=1 βi≥k

P(β)

s.t
∑

β∈C:βi=1

P(β) = qi1, ∀i ∈ [n],∑
β∈C

P(β) = 1,

P(β) ≥ 0

(3.28)

where q0, q1 are the n dimensional vectors of conditional probabilities qi0 and qi1 and
C = {0, 1}n. The linear programs (3.27) and (3.28) can be treated as independent of the
root variable c0 and can be solved by using the compact linear program (3.3) derived
earlier or the closed-form expression (3.18) directly. It has been shown in Rüschendorf
(1991) (see Proposition 8) that the optimal value of the star-structured linear program
(3.26) can be expressed in terms of the optimal values of the regular univariate linear
programs (3.27) and (3.28) as:

P
?
b(n, k, q0,p0,p1) = (1− q0)P u(n, k, q0) + q0P u(n, k − 1, q1)

Using the closed-form bound from Theorem 9, the above result can be concisely ex-
pressed as:

P
?
b(n, k, q0,p0,p1) = (1− q0)min

(
min

1≤`≤k

∑n−k+`
i=1 q(i0)

`
, 1

)
+ q0min

(
min

1≤`≤k−1

∑n−k+`+1
i=1 q(i1)

`
, 1

)



Chapter 3. Bounds with Extremal Dependence 76

where q(i0), q(i1) represent the ith order statistic of the conditional probabilities qi0, qi1
respectively.

3.2 Extension to discrete marginals

In this section we consider a natural extension of Bernoulli random variables to vari-
ables with discrete support where we assume that all variables have identical discrete
integer support points of the form 0, 1, 2, ....,m− 1 for some m ∈ Z+. This assumption
is without loss of generality since we will later show in Corollary 7 that the results with
identical integer support can be generalized to the case of non-identical rational dis-
crete support points. Consider an n dimensional random vector c̃ = [c̃i], i ∈ [n] where
each discrete random variable c̃i can assume a value 0, 1, 2, ....,m − 1 for some integer
m ≥ 2. Further assume that the marginals are given as

P(c̃i = j) = pij , ∀i ∈ [n], ∀j ∈ [0,m− 1],

where
m−1∑
j=0

pij = 1, ∀i ∈ [n]

Denote by Cd = {0, 1, 2, . . . ,m − 1}n the set of realizations of c̃ and by P d(n, k,p) the
tight upper bound on the probability that the sum of n discrete random variables at
least equals k by:

P d(n, k,p) = max
θ∈Θd

Pθ(
n∑
i=1

c̃i ≥ k), ∀k ∈ [n(m− 1)]

where Θd denotes the ambiguity set of joint distributions supported on Cd consistent
with the given univariate information, i.e.,

Θd = {θ ∈ Θ({0, 1, . . . ,m− 1}n) : Pθ (c̃i = j) = pij , ∀i ∈ [n], ∀j ∈ [0,m− 1]}

P d(n, k,p) can be computed as the optimal value of the following exponential-sized
linear program:

P d(n, k,p) = max
∑

c∈Cd:
∑n
i=1 ci≥k

P(c)

s.t.
∑

c∈Cd:ci=j

P(c) = pij , ∀i ∈ [n], ∀j ∈ [0,m− 1]∑
c∈Cd

P(c) = 1

P(c) ≥ 0 ∀c ∈ Cd

(3.29)

We next derive a compact linear programming formulation that provides valid upper
bounds on P d(n, k,p).
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3.2.1 Compact linear program and primal proof of correctness

Theorem 10. The optimum solution of the exponential-sized linear program in (3.29) is upper
bounded by the optimal solution of the following compact linear program:

P d(n, k,p) ≤ max z0

s.t. 0 ≤ zij ≤ pij , ∀i ∈ [n], ∀j ∈ [0,m− 1],

m−1∑
j=0

zij = z0, ∀i ∈ [n],

n∑
i=1

m−1∑
j=0

jzij ≥ kz0

(3.30)

Proof. The proof broadly parallels that of Theorem 8 and thus we only preserve the
most important steps and highlight differences for the purpose of exposition. Introduce
an auxiliary binary random variable yij = 1ci=j , i ∈ [n], j ∈ [0,m − 1] which thus
satisfies the constraints

m−1∑
j=0

yij = 1, ∀i ∈ [n]

m−1∑
j=0

jyij = ci, ∀i ∈ [n]

for any realization c of the random vector c̃. Next consider the dual of (3.29):

P d(n, k,p) = min
n∑
i=1

m−1∑
j=0

λijpij + λ0

s.t.
n∑
i=1

m−1∑
j=0

λijyij + λ0 ≥ 1∑
ci≥k(c), ∀c ∈ Cd,

m−1∑
j=0

yij = 1, ∀i ∈ [n],

yij ∈ {0, 1}, ∀i ∈ [n], ∀j ∈ [0,m− 1],

λij free, ∀i ∈ [n], ∀j ∈ [0,m− 1],

λ0 free
(3.31)

We use a similar approach as was used in Section 3.1 to derive the compact linear
program (3.3) for the Bernoulli case, by splitting the indicator constraint set in (3.31)
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into two sets

n∑
i=1

m−1∑
j=0

λijyij + λ0 ≥ 0 ∀c ∈ C

n∑
i=1

m−1∑
j=0

λijyij + λ0 ≥ 1 ∀c ∈ C :

n∑
i=1

ci ≥ k

and subsequently converting them into optimization problems with the binary vari-
ables yij as decision variables (for fixed λij , λ0). Next, consider their respective linear
program relaxations as follows:

λ0 +



min

n∑
i=1

m−1∑
j=0

λijyij

s.t
m−1∑
j=0

yij = 1, ∀i ∈ [n],

0 ≤ yij ≤ 1, ∀i ∈ [n], ∀j ∈ [0,m− 1]


≥ 0 (3.33)

λ0 +



min

n∑
i=1

m−1∑
j=0

λijyij

s.t.
m−1∑
j=0

yij = 1, ∀i ∈ [n],

n∑
i=1

m−1∑
j=0

jyij ≥ k,

0 ≤ yij ≤ 1, ∀i ∈ [n], ∀j ∈ [0,m− 1]



≥ 1 (3.34)

In the first relaxation (3.33), the constraint matrix is totally unimodular and thus guar-
antees integer extreme points. However, we note that in the second relaxation (3.34),
the constraint matrix is not totally unimodular due to the coefficients j in the single con-
straint involving k and hence the linear program relaxation does not guarantee integer
extreme points. Note that since (3.34) involves a minimization problem, the relaxation
provides a lower bound on the integer separation problem which makes it harder to
satisfy the ≥ 1 constraint, i.e., it tightens the dual feasible region.
Dualizing (3.33) and (3.34) and forcing a single instance to satisfy the resulting dual
as in (3.8) and (3.10), we can write the tightened compact dual version of (3.31) with
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polyhedral-sized constraint sets as:

P
c
d(n, k,p) = min

n∑
i=1

m−1∑
j=0

λijpij + λ0

s.t. λ0 −
n∑
i=1

m−1∑
j=0

uij +
n∑
i=1

vi ≥ 0,

λ0 −
n∑
i=1

m−1∑
j=0

wij +
n∑
i=1

ti + kw0 − 1 ≥ 0,

λij + uij − vi ≥ 0, ∀i ∈ [n], ∀j ∈ [0,m− 1],

λij + wij − jw0 − ti ≥ 0, ∀i ∈ [n], ∀j ∈ [0,m− 1],

λij free, uij ≥ 0, wij ≥ 0, ∀i ∈ [n], ∀j ∈ [0,m− 1],

vi, ti free, ∀i ∈ [n],

w0 ≥ 0,

λ0 free
(3.35)

Note that the compact dual (3.35) is not in general equivalent to, but rather a tightening
of the large-sized dual (3.31) and thus the optimal value P cd(n, k,p) (where the super-
script c indicates that it is the optimal value of a compact linear program) provides a
valid upper bound on P d(n, k,p). Finally, we dualize (3.35) and eliminate redundant
variables as in (3.12) to obtain the following compact primal linear program:

P
c
d(n, k,p) = max z0

s.t. 0 ≤ z0 − zij ≤ 1− pij , ∀i ∈ [n], ∀j ∈ [0,m− 1],

0 ≤ zij ≤ pij , ∀i ∈ [n], ∀j ∈ [0,m− 1],

m−1∑
j=0

zij = z0, ∀i ∈ [n],

n∑
i=1

m−1∑
j=0

jzij ≥ kz0

(3.36)

Note that the constraints in the compact linear programs (3.36) and (3.3) are similar
except for the coefficients j in the single constraint involving k and the third set of
constraints

∑m−1
j=0 zij = z0, i ∈ [n] which corresponds to the constraint on the auxiliary

binary variables
∑m−1

j=0 yij = 1, i ∈ [n]. In fact we can show that the second and third
sets of constraints in (3.36) are subsumed by the first set as follows:

z0 − zij =
∑m−1

t=0 zit − zij ∀i ∈ [n], ∀j ∈ [0,m− 1],

=
∑m−1

t=0, t 6=j zit ∀i ∈ [n], ∀j ∈ [0,m− 1],

≥ 0
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where the last inequality follows from non-negativity of zij in the second constraint set.
Further,

z0 − zij =
∑m−1

t=0, t 6=j zit ∀i ∈ [n], ∀j ∈ [0,m− 1],

≤
∑m−1

t=0, t 6=j pit ∀i ∈ [n], ∀j ∈ [0,m− 1],

= 1− pij ∀i ∈ [n], ∀j ∈ [0,m− 1],

where the second inequality follows from zij ≤ pij of the second constraint set. We
can thus eliminate the first set of constraints in (3.36) and only retain the most com-
pact linear program formulation (3.30) with only O(nm) decision variables and con-
straints. Note that (3.30) is a relaxation of the large-sized linear program (3.29) and
hence P d(n, k,p) ≤ P cd(n, k,p) and the proof is thus completed.

Connection to other work: We note that it has been shown that the tight upper bound
P d(n, k,p) is computable as the optimal value of a compact linear program (see Section
2.2 in Padmanabhan et al., 2021). This linear program involves reformulating the dual
separation problem in (3.34) using dynamic programming recursions, which admits
pseudo-polynomial time solutions. Although the tight bound P d(n, k,p) is efficiently
computable as the optimal solution of this compact linear program, the trade off is that
the formulation is considerably more involved withO(n2m2) variables and constraints
compared to our compact linear program in (3.30) with O(nm) decision variables and
constraints. In spite of the simplicity of the compact formulation in (3.30), numeri-
cal examples in Section 3.2.3 demonstrate that the computed upper bounds P cd(n, k,p)
are tight in many, if not most instances. More importantly, this simplified formulation
admits closed-form solutions (see Section 3.2.2) when the discrete variables are identi-
cal. Numerical experiments in Example 9 show that the derived closed-form bound is
tight in most randomly generated instances with identical discrete variables, while it
appears to be almost always tight for symmetric and identical discrete variables.

Primal proof of correctness

We next provide a direct proof of Theorem 10 without going through the dual formu-
lations and also interpret the decision variables of the compact linear program (3.30)
in terms of the probabilities from a feasible joint distribution of the large-sized primal
linear program (3.29).

Proposition 8. The optimal value P cd(n, k,p) of the compact linear program in (3.30) provides
a valid upper bound on the tight bound P d(n, k,p). Further, for any feasible distribution θ ∈
Θd of the large-sized linear program (3.29) and any k ∈ [n(m − 1)], there exists a feasible
solution of the compact linear program that satisfies:

z0 = Pθ (
∑n

t=1 c̃t ≥ k)

zij = Pθ (
∑n

t=1 c̃t ≥ k, c̃i = j) , ∀i ∈ [n], ∀j ∈ [0,m− 1]
(3.37)

Proof. Given a feasible solution Pθ(c), ∀c ∈ Cd of the large-sized primal linear program
(3.29) for some distribution θ ∈ Θd, construct a feasible solution to (3.30) by aggregating
the probabilities as follows:

z0 =
∑

Pθ(c)
c∈Cd:

∑n
t=1 ct≥k

, zij =
∑

Pθ(c)
c∈Cd:

∑n
t=1 ct≥k, ci=j

∀i ∈ [n], ∀j ∈ [0,m− 1] (3.38)
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Using the fact that Pθ(c̃i = j) = pij , ∀i ∈ [n], ∀j ∈ [0,m− 1], it is straightforward to see
that the interpretation in (3.38) satisfies the first two constraint sets in (3.30), while the
third constraint is satisfied as follows:

n∑
i=1

m−1∑
j=0

jzij
z0

=
n∑
i=1

m−1∑
j=0

jPθ

(
c̃i = j

∣∣∣∣ n∑
t=1

c̃t ≥ k

)

=

n∑
i=1

Eθ

(
c̃i

∣∣∣∣ n∑
t=1

c̃t ≥ k

)

= Eθ

(
n∑
i=1

c̃i

∣∣∣∣ n∑
t=1

c̃t ≥ k

)
≥ k

where the last inequality is true since given that the sum of n non-negative discrete
random variables is at least k, the expected value of the sum must be at least k. Lastly,
from the interpretation of z0 in (3.38), it is clear that the objective function values of the
two linear programs coincide. Hence we have proved that the optimal values of the
large-sized and compact primal linear programs are related as P d(n, k, p) ≤ P

c
d(n, k,p).

3.2.2 Closed-form upper bounds

We next show that the compact linear program (3.30) admits a closed-form expression
for the optimal solution P cd(n, k,p) when the discrete random variables are identical or
symmetric identical.

Theorem 11. When the marginals of the discrete random vector c̃ are identical, i.e., pij =
pj , i ∈ [n], j ∈ [0,m − 1], the optimum solution of the exponential-sized linear program in
(3.29) is upper bounded by the following closed-form expression:

P d(n, k,p) ≤ min

(
n

k − nt
(ψt − tπt) , 1

)
, ∀k ∈ [n(m− 1)] (3.39)

where

ψr =
m−1∑
j=r

jpj r ∈ [0,m− 1]

πr =

m−1∑
j=r

pj r ∈ [0,m− 1]

are the rth discrete partial mean and partial marginal sum respectively of any discrete variable

ci, i ∈ [n] and t =
m−2∑
j=1

1(k−nψj/πj)≥0 is an integer in [0,m− 2].

Proof. When the marginals are identical, we can replace the zij , i ∈ [n] decision vari-
ables with zj for all j ∈ [0,m− 1] and the compact linear program (3.30) along with its
dual can thus be written as:
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max z0

s.t. 0 ≤ zj ≤ pj , ∀j ∈ [0,m− 1],

m−1∑
j=0

zj = z0,

n

m−1∑
j=0

jzj ≥ kz0

(3.40)

min
n∑
j=1

αjpj

s.t. γ − β − 1 ≥ 0

β + αj −
njγ

k
≥ 0, ∀j ∈ [0,m− 1],

αj ≥ 0, ∀j ∈ [0,m− 1],

γ ≥ 0,

β free

(3.41)

We will show that there exists an optimal solution of the compact primal-dual linear
program pair (3.40)-(3.41) that attains the closed-form bound in (3.39). Consider the
following optimal solution of the compact primal-dual linear program pair:

Range of k Primal optimal solution (3.40) Dual optimal solution (3.41)
Optimum attained

(z0)

nψt
πt
≤ k ≤ nψt+1

πt+1

t =
∑m−2
j=1 1(k≥nψj/πj)

zj =


0, j ∈ [0, t− 1]

z0 − πt+1, j = t

1/m, j ∈ [t+ 1,m− 1]

z0 =
n

k − nt (ψt − tπt)

αj =


0, j ∈ [0, t]

n(j − t)
k − nt , j ∈ [t+ 1,m− 1]

β = nt/(k − nt)

γ = k/(k − nt)

n

k − nt (ψt − tπt)

k ≤ nψ0 = S1
zj = 1/m, j ∈ [0,m− 1],
z0 = 1

αj = 1, j ∈ [0,m− 1],
β = −1,
γ = 0

1

TABLE 3.2: Extremal distribution of the compact linear program pair (3.40)-(3.41) for
identical discrete random variables

where S1 is the first binomial moment E [
∑n

i=1 c̃i]. It can be easily verified that the
above solutions are feasible for both the primal and the dual and attain the closed-form
bound in (3.39), which is thus the best upper bound attainable by the compact linear
program. The result then follows from P d(n, k,p) ≤ P cd(n, k,p).

We note that (3.39) can be expressed more precisely as:

P d(n, k,p) ≤


1, k ≤ nψ0

n

k − nt
(ψt − tπt) ,

nψt
πt
≤ k ≤ nψt+1

πt+1

, ∀t ∈ [0,m−2], ∀k ∈ [n(m−1)]

(3.42)

When
nψ0

π0
≤ k ≤ nψ1

π1
, we have t = 0 and the tight bound in (3.42) reduces to the
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Markov bound
nψ0

k
=
S1

k
.

Corollary 6. When the marginals of the discrete random vector c̃ are symmetric identical, i.e.,
pij = 1/m, i ∈ [n], j ∈ [0,m − 1], the optimum solution of the exponential-sized linear
program in (3.29) is upper bounded by the following closed-form expression:

P d(n, k,p) ≤ min

(
n(m− t)(m− t− 1)

2m(k − nt)
, 1

)
, ∀k ∈ [n(m− 1)] (3.43)

where t =

⌈
2k

n
−m

⌉
and dxe maps x to the smallest integer greater than or equal to x.

Proof. The proof is straightforward from Theorem 11 by using pj = 1/m, j ∈ [0,m− 1]
and noting that

ψt
πt

=

∑m−1
j=t jpj∑m−1
j=t pj

=
(m+ t− 1)

2

and further from (3.42), for any k ≥ n(m− 1)/2, the non-trivial bound is valid when

(m+ t− 1)

2
≤ k

n
≤ (m+ t)

2
,

which is satisfied by

t =

⌈
2k

n
−m

⌉
, t ∈ [0,m− 2]

and the result follows. We note that (3.43) can be expressed more precisely as:

P d(n, k,p) ≤


1, k <

n(m− 1)

2

n(m− t)(m− t− 1)

2m(k − nt)
, k ≥ n(m− 1)

2

3.2.3 Numerical results

We next demonstrate the usefulness of the compact linear program derived in Theorem
10 in computing upper bounds on P d(n, k,p). We compare the tight bound P d(n, k,p)
derived in Corollary 2.2 of Padmanabhan et al. (2021) (from a more involved com-
pact linear program as noted earlier) with our upper bound P

c
d(n, k,p) derived as the

optimal value of the compact linear program in (3.30) (alternatively the closed-form so-
lutions in Theorem 11 and Corollary 6 for identical marginals) and the Markov bound∑n

i=1

∑m−1
j=0 jpij
k .

Example 8 (Non-identical marginals). We first consider n = 4 discrete random variables
with m = 5 support points each, i.e., each variable can assume values from {0, 1, 2, 3, 4}. In
this example, we plot the three bounds by generating 300 instances of random probabilities
pij , i ∈ [4], j ∈ [0, 4] where the probabilities are uniformly and independently generated in
(0, 1) such that

∑m−1
j=0 pij = 1, ∀i ∈ [n].
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(a) k=12
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FIGURE 3.3: Comparison with tight bound for n = 4, m = 5 and 300 random instances

Figure 3.3a plots the three bounds for k = 12 while Figure 3.3b plots them for k = 16. Our up-
per bounds (in red) exactly coincide with the tight bound (in purple) when k = n(m−1) = 16,
which is the largest possible value of k, while it is marginally weaker than the tight bound when
k = 12. The Markov bound performs better for smaller k.
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(a) k=40
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(b) k=60

FIGURE 3.4: Comparison with tight bound for n = 20, m = 5 and 300 random instances

Figure 3.4 shows similar plots for n = 20 variables with k = 40 and 60 for 300 randomly
generated instances. In this case, our upper bound exactly coincides with the tight bound in both
the plots while the Markov bound becomes weaker with increasing k. Numerical illustrations
show that as n increases, the upper bounds are increasingly stronger for all k ∈ [0, n(m − 1)].
Note that the plots in figures 3.3 and 3.4 are shown with the bounds sorted according to the
increasing value of the tight bound.
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In the next example, we demonstrate the usefulness of the closed-form bound in Theo-
rem 11 and Corollary 6 in providing upper bounds on P d(n, k,p) when the marginals
are identical.

Example 9 (Identical marginals). Consider n = 10 discrete random variables with m = 10
support points each. We generate 200 instances of identical random probabilities pj , j ∈ [0, 9]
where pij = pj , ∀i ∈ [10], ∀j ∈ [0, 9] and the probabilities are uniformly and independently
generated in (0, 1) such that

∑m−1
j=0 pj = 1. Figure 3.5a plots the closed-form bound in (3.39)

and the tight bound P d(n, k,p) derived in Padmanabhan et al. (2021) for a selected k values
where the bounds are non-trivial. As seen in Figure 3.5a, the upper bounds are almost always
tight for all chosen k values.
Figure 3.5b plots the closed-form bound in (3.43) with the tight bound when the marginals are
symmetric identical, i.e., when pij = 1/m, ∀i ∈ [10], ∀j ∈ [0,m−1] for m = 6, 8, 10, 12, 14.
Note that we do not generate random instances here since the marginals are fixed and thus the
bounds are plotted against their respective valid ranges of k, i.e., k ∈ [0, 10(m − 1)]. It is
observed that the upper bound in Corollary 6 is always tight for all the selected values of m and
k ∈ [0, 10(m − 1)]. We deliberately exclude the Markov bound in Figure 3.5 to avoid clutter,
but our results show similar behaviour of weaker performance with increasing k as observed in
Example 8.
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FIGURE 3.5: Comparison of bounds for identical probabilities with n = 10

In conclusion, the closed-form bounds in (3.39) and (3.43) appear to be tight in many
instances such as when the marginals are identical or symmetric identical. Even with
random marginals, the upper bounds derived as the optimal value of the compact lin-
ear program (3.30) appear to be tight in many cases such as when k = n(m−1) or large
n values.

3.2.4 Extension to real-valued discrete support

We next show that the results of Theorem 10 can be generalized to the case when the
discrete variables assume rational values. Suppose, each discrete random variable c̃i
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assumes a value from the set Ai = {ai0, ai1, . . . , ai(m−1)} where aij ∈ Q (the set of
rational numbers), for all j ∈ [0,m − 1], i ∈ [n] and P(c̃i = aij) = pij , for i ∈ [n], j ∈
[0,m− 1]. In this case, the set of realizations of c̃ can be written as the cross product of
the sets Ai, i.e., Cd = ×

i∈[n]
Ai and

P d(n, k,p) = max
θ∈Θd

Pθ(
n∑
i=1

c̃i ≥ k), ∀k ∈ [amin, amax] (3.44)

where

amin =
n∑
i=1

min
j∈[0,m−1]

aij , amax =
n∑
i=1

max
j∈[0,m−1]

aij

and

Θd =

{
θ ∈ Θ

(×
i∈[n]

Ai
)

: Pθ (c̃i = aij) = pij , ∀i ∈ [n], ∀j ∈ [0,m− 1]

}

Corollary 7. The tight bound P d(n, k,p) in (3.44) on the probability that n real-valued dis-
crete random variables add up to at least k where k ∈ [amin, amax], is upper bounded by the
optimal solution of the following compact linear program:

P d(n, k,p) ≤ max z0

s.t. 0 ≤ zij ≤ pij , ∀i ∈ [n], ∀j ∈ [0,m− 1],

m−1∑
j=0

zij = z0, ∀i ∈ [n],

n∑
i=1

m−1∑
j=0

aijzij ≥ kz0

(3.45)

Proof. The proof follows from the proof of Theorem 10 by redefining yij = 1ci=aij , i ∈
[n], j ∈ [0,m− 1] which thus satisfies the constraints

m−1∑
j=0

yij = 1, ∀i ∈ [n],

m−1∑
j=0

aijyij = ci, ∀i ∈ [n]

for any realization c of the random vector c̃.

If the support points and marginal probabilities are identical, i.e.,

aij = aj , ∀i ∈ [n], ∀j ∈ [0,m− 1], pij = pj , ∀i ∈ [n], ∀j ∈ [0,m− 1],

we can replace the zij , i ∈ [n] decision variables with zj for all j ∈ [0,m − 1] and
the optimal solution to (3.45) can be derived as a closed form expression similar that
in Theorem 11. The results in this section can be extended to derive lower bounds on
the tail probability of the sum of real-valued discrete random variables using similar
ideas.
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3.3 Generalization to weighted tail probability bounds

In this section, we generalize the results of Section 3.1 to weighted tail probability
bounds of sums of Bernoulli random variables. Denote by w = (w1, w2, . . . , wn), wi ∈
R, ∀i ∈ [n] a vector of pre-specified weights. We are interested in computing the fol-
lowing tight upper bound on the weighted sum of the tail probabilities

max
θ∈Θu

n∑
l=0

wlPθ(
n∑
i=1

c̃i ≥ l).

We recall that the ambiguity set Θu ensures consistency of the considered distributions
with the given univariate marginals for each ci, i ∈ [n]. Note that without loss of
generality, we can ignore ` = 0 and consider Pθ(

∑n
i=1 c̃i = l) for ` ∈ [n] instead of tail

probabilities by a suitable transformation of weights. Denote by P uw(n,w,p) the tight
bound

P uw(n,w,p) = max
θ∈Θu

n∑
l=1

wlPθ(
n∑
i=1

c̃i = l)

which can be computed as the optimal value of the following exponential-sized linear
program:

P uw(n,w,p) = max

n∑
l=1

wl
∑

c∈C:
∑n
t=1 c̃t=l

P (c)

s.t.
∑

c∈C:ci=1

P(c) = pi, ∀i ∈ [n],∑
c∈C

P(c) = 1,

P(c) ≥ 0 ∀c ∈ C

(3.46)

We note that the feasible region of the above linear program is non-empty and since
the weights wi, ∀i ∈ [n] are real-valued, the linear program cannot be unbounded
and an optimal solution exists. Also note that when w = [0k−1,1n−k+1] (zeros up
to index k − 1 and ones thereafter), the objective function in (3.46) reduces to the tail
probability bounds considered in (3.1). We next derive a compact reformulation of
(3.46) by considering the linear relaxation of its dual separation problems, similar to
the proof of Theorem 8.
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3.3.1 Compact linear program and primal proof of correctness

Theorem 12. The exponential-sized linear program in (3.46) is equivalent to the following
compact linear program:

P uw(n,w,p) = max
n∑
l=0

xlwl

s.t.
n∑
l=0

xl = 1,

n∑
l=0

yli = pi, ∀i ∈ [n],

xl ≥ yli, ∀i ∈ [n], ∀l ∈ [n],

n∑
i=1

yli = lxl, ∀l ∈ [n],

xl ≥ 0, ∀l ∈ [n],

yli ≥ 0, ∀i ∈ [n], ∀l ∈ [n],

(3.47)

The corresponding lower bound P uw(n,w,p) can be computed as the optimal value of (3.47),
with a minimization objective instead of maximization.

Proof. Consider the dual of the large-sized linear program (3.46)

P uw(n,w,p) = min
n∑
i=1

λipi + λ0

s.t.
n∑
i=1

λici + λ0 ≥ wl, ∀c ∈ C :
∑
ci = l, ∀l ∈ [n],

λi free, ∀i ∈ [n],

λ0 free

(3.48)

The dual has 2n constraints, which can be divided into n sets of
(
n
l

)
constraints for

l ∈ [n]. Similar to the steps followed in (3.6)-(3.11), for each l ∈ [n], the set of
(
n
l

)
con-

straints corresponding to the scenarios c ∈ C :
∑
ci = l can be replaced with equivalent

polynomial-sized constraint sets by converting them into optimization problems with
{ci, i ∈ [n]} as decision variables for fixed {λ0, λi, i ∈ [n]} as follows:

λ0 +

{
min

n∑
i=1

λici : c ∈ C,
n∑
i=1

ci = l

}
≥ wl ∀l ∈ [n]

≡ λ0 +

{
min

n∑
i=1

λici : 0 ≤ ci ≤ 1, ∀i ∈ [n],

n∑
i=1

ci = l

}
≥ wl, ∀l ∈ [n]

(3.49)

where the equivalence of the linear program relaxation follows from the totally uni-
modular structure of the constraint matrix in (3.49). We now dualize this resulting
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linear program as follows:

λ0 +



max
n∑
i=1

uli + lvl

s.t. uli + vl ≤ λi, ∀i ∈ [n],

uli ≤ 0, ∀i ∈ [n],

vl free


≥ wl, ∀l ∈ [n] (3.50)

Since an optimal solution to the primal (3.46) exists, by strong duality, the dual (3.48)
must also have an optimal solution. Consequently there must exist a feasible solution
to the linear program (3.50) and the constraint sets corresponding to each l ∈ [n] in
(3.48) can be replaced by the following polynomial-sized set of constraints:

λ0 +
n∑
i=1

uli + lvl ≥ wl,

uli + vl ≤ λi, ∀i ∈ [n],

uli ≤ 0, ∀i ∈ [n],

vl free


, ∀l ∈ [n] (3.51)

and thus the compact version of the dual (3.48) can be written as:

P uw(n,w,p) = min
n∑
i=1

λipi + λ0

s.t. λ0 −
n∑
i=1

uli + lvl ≥ wl, ∀l ∈ [n],

vl − uli ≤ λi, ∀i ∈ [n],∀l ∈ [n],

uli ≥ 0, ∀i ∈ [n],∀l ∈ [n],

vl free, ∀l ∈ [n],

λi free ∀i ∈ [n],

λ0 free

(3.52)

Finally, dualizing (3.52) leads to the compact linear program (3.47) withO(n2) variables
and constraints. Their feasible regions remaining the same, it is straightforward to
see that the corresponding lower bound P uw(n,w,p) can be computed as the optimal
value of the compact linear program (3.47) with a minimization objective instead of
maximization.

Connection to existing work: Weighted objective functions as in (3.46) have been con-
sidered in Kwerel (1975b) albeit with aggregated information in the form of the first
two binomial moments. Assuming more information in the form of m-variate joint
probabilities

P (c̃i1 = 1, c̃i2 = 1, . . . c̃ir = 1) , 1 ≤ i1 < i2 · · · < ir ≤ n, r ≤ m ≤ n
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Prékopa, Vizvári, and Regös (1997) formulate partially aggregated-disaggregated lin-
ear programs (see Section 3) with multivariate binomial moments to provide bounds
on the linear functionals of the probabilities P (

∑n
i=1 c̃i = l) , ` ∈ [0, n]. However, these

works only restrict attention to the case when w = [0k−1,1n−k+1] to derive bounds on
the probability that at least k out of n events occur or wi = 1i=k, i ∈ [n] to derive
bounds on the probability that exactly k out of n events occur. Thus the compact lin-
ear program (3.47) and its minimization version, which compute the tightest upper and
lower bounds on the weighted tail probability function in (3.46), appear to be unknown
in the literature to the best of our knowledge.

Primal proof of correctness

We next provide a direct proof of equivalence of the primal formulations of the large-
sized compact linear programs with the weighted tail probability objective (without
going through the dual formulations) and also interpret the decision variables of the
compact primal formulation in terms of the probabilities from a feasible joint distribu-
tion of the large-sized primal formulation.

Proposition 9. The large-sized primal linear program (3.46) is equivalent to the compact pri-
mal linear program (3.47), where for any extremal distribution θ? ∈ Θu of the large-sized linear
program and any ` ∈ [n], the corresponding optimal solution of the compact linear program
satisfies:

xl = Pθ(
n∑
t=1

c̃t = l) ∀l ∈ [n]

yli = Pθ(
n∑
t=1

c̃t = l, c̃i = 1) ∀l ∈ [n], ∀i ∈ [n]

(3.53)

Proof. Denote the optimal value of the compact linear program in (3.47) byP cuw(n,w,p).
Step (1): P uw(n, k, p) ≤ P cuw(n, k,p)
Given a feasible solution Pθ(c), ∀c ∈ C of the large-sized primal linear program (3.46)
for some distribution θ ∈ Θu, construct an optimal solution of the compact linear pro-
gram in (3.47) as follows:

xl =
∑

Pθ(c)
c∈C:

∑n
t=1 ct=l

∀l ∈ [n], yli =
∑

Pθ(c)
c∈C:

∑n
t=1 ct=l, ci=l

∀l ∈ [n], ∀i ∈ [n] (3.54)

Using the fact that Pθ(c̃i = 1) = pi, ∀i ∈ [n], it is straightforward to see that the
interpretation satisfies the first constraint and next two constraint sets in (3.47), while
the third constraint set is satisfied as follows:

n∑
i=0

yli =
n∑
i=0

Pθ(
n∑
t=1

c̃t = l, c̃i = 1) = lPθ(
n∑
t=1

c̃t = l) = lxl, ∀l ∈ [n],

Step (2): P uw(n, k, p) ≥ P cuw(n, k,p)
Given a feasible solution xl, yli, ∀l ∈ [n],∀i ∈ [n] of the compact linear program
(3.47), we can show that there exists a feasible solution of the large-sized linear program
(3.46) that attains the same objective function value while satisfying the interpretation
in (3.54). The proof is similar to that of Lemma 7 and we omit further details for the
sake of brevity.
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One of the criticism of considering tail probability functions of sums of extremally de-
pendent random variables, is that the computed tight bounds P u(n,w,p) are often too
conservative given that only the univariate marginal information of each random vari-
able ci is known. At the other end of the spectrum, mutually independent variables
provide better bounds but are often impractical in many real-world situations. To off-
set the conservatism in our approach, we next consider introducing a limited degree
of independence into our model by splitting the set of random variables into two sets,
one of which contains extremally dependent variables while the other contains mu-
tually independent variables. The two sets of variables are assumed independent of
each other. We then show that under the given assumptions, the tail probability of the
total sum of variables in both sets can be reformulated as a weighted tail probability
function and thus the tightest bound on this tail probability can be computed by direct
application of Theorem 12.

3.3.2 Applications to limited dependency

Consider two sets of Bernoulli random variables M1 and M2 of cardinality n1 and n2

as follows:

M1 = {αi : P (α̃i = 1) = pi, i ∈ [n1]} M2 =
{
βj : P (β̃j = 1) = pn1+j , j ∈ [n2]

}
We assume that the variables in set M1 are extremally dependent (there is no defined
correlation between them), while the variables in M2 are mutually independent. Fur-
ther, we assume that the two sets of variables are independent of each other. We are
interested in computing tail probability bounds on the total sum of variables of both
sets. Denote the tightest upper bound on this tail probability as:

P `(n1, n2, k,p) = max
θ∈Θ`

Pθ
( n1∑
i=1

α̃i +

n2∑
j=1

β̃j ≥ k
)
, ∀k ∈ [n1 + n2] (3.55)

where p = (p1, p2, . . . , pn1+n2) is the vector of concatenated probabilities and Θ` is the
set of distributions consistent with the given assumptions:

Θ` =
{
θ ∈ Θ({0, 1}n1+n2) : Pθ ((α,β)) = Pθ (α)Pθind (β) , ∀ (α,β) ∈ {0, 1}n1+n2

Pθ (α̃i = 1) = pi, ∀i ∈ [n1]
}
.

where (α,β) is the concatenated random vector of dimension n1 + n2 and θind is the
product distribution of the independent variables in M2 supported on {0, 1}n2 . We
term this arrangement as limited dependency to indicate that the extremally dependent
variables are restricted to the set M1. Note that for any feasible distribution θ ∈ Θ`,
since the variables in the sets M1 and M2 are independent of each other, we can write:

Pθ
( n1∑
i=1

α̃i +

n2∑
j=1

β̃j ≥ k
)

=

n2∑
`=0

[
Pθα
( n1∑
i=1

α̃i ≥ k − `
)
Pθind

( n2∑
j=1

β̃j = `
)]
, (3.56)

where θα is a feasible distribution in the set Θα of joint distributions of the variables in
M1 supported on {0, 1}n1 and consistent with the given univariate information, i.e.,

Θα = {θα ∈ Θ({0, 1}n1) : Pθα (α̃i = 1) = pi, ∀i ∈ [n1]} .
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Since the random variables in M2 are Bernoulli and mutually independent, it is pos-
sible to compute Pθind

(∑n2
j=1 β̃j = `

)
, ` ∈ [0, n2] in polynomial time using a dynamic

programming recursion as follows:

Pθind

( n2∑
j=1

β̃j = `

)
= Pθind

( n2−1∑
j=1

β̃j = `

)
P(β̃n2 = 0) + Pθind

( n2−1∑
j=1

β̃j = `− 1

)
P(β̃n2 = 1), ` ∈ [n2],

where n2 ≥ 2, P(β̃j = 0) = 1− pn1+j , P(β̃j = 1) = pn1+j , ∀j ∈ [n2]
(3.57)

We also note that there is a one-one mapping between the set of feasible distributions
in Θ` and Θα as follows:

∀θα ∈ Θα, ∃θ ∈ Θ`

∣∣∣ Pθ((α,β)) = Pθα(α)× Pθind(β), ∀ (α,β) ∈ {0, 1}n1+n2

∀θ ∈ Θ`, ∃θα ∈ Θα

∣∣∣ Pθα(α) =
∑

β∈{0,1}n2

Pθ((α,β)), ∀α ∈ {0, 1}n1

where × indicates the cross product of the probability masses in the two joint distri-
butions considered. Thus, the extremal distribution θ∗ ∈ Θ` that maximizes the right
hand side of (3.56) will correspond to the extremal distribution θ∗α ∈ Θα that maximizes
the right hand side, through the relation θ∗ = θ∗α×θind. Hence we can reformulate (3.55)
as follows:

P `(n1, n2, k,p) = max
θ∈Θ`

Pθ
( n1∑
i=1

α̃i +

n2∑
j=1

β̃j ≥ k
)

= max
θ∈Θα

n2∑
`=0

[
Pθα
( n1∑
i=1

α̃i ≥ k − `
)
Pθind

( n2∑
j=1

β̃j = `
)]
,

(3.58)

By re-writing the tail probabilities as Pθα
(∑n1

i=1 α̃i ≥ k−`
)

=
∑n1

r=k−` Pθα
(∑n1

i=1 α̃i = r
)

we can cast (3.58) in the form of a weighted tail probability function (similar to that in
(3.46)) with n1 decision variables. It can be shown that the corresponding weights
wl, ∀l ∈ [0, n1] are:

wl =



{
Φ(n2 − k + `), 0 ≤ ` ≤ k − 1

1, k ≤ ` ≤ n1

, k < min(n1, n2)

Φ(n2 − k + `), 0 ≤ ` ≤ n1, n1 ≤ k ≤ n2{
Φ(n2 − k + `), k − n2 ≤ ` ≤ k − 1

1, k ≤ ` ≤ n1

, n2 ≤ k ≤ n1

Φ(n2 − k + `), k − n2 ≤ ` ≤ n1, k > max(n1, n2)
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where

Φ(r) =

r∑
i=0

P(

n2∑
j=1

β̃j = n2 − i), 0 ≤ r ≤ n2

is the reverse cumulative sum (up to index r) of the independent tail probabilities com-
puted using (3.57) and Φ(n2) = 1. The compact linear program (3.47) can now be
directly used with n = n1, p = (p1, p2, . . . , pn1) and the weights defined above to
compute P `(n1, n2, k,p) even for relatively large values of n as demonstrated in the
numerical results below.

Other related bounds:
Denote the total number of variables in (α,β) by n = n1 + n2. We first consider the
two extremes of the limited dependency, i.e., extremal dependence and complete inde-
pendence. When n1 = n, all the random variables are extremally dependent (Θ` = Θu)
and the tight bound P u(n, k,p) is retrieved. Similarly, when n2 = n, all the variables
are mutually independent and the tail probability bound Pind(n, k,p), computed using
the dynamic program recursion in (3.57) is retrieved. These bounds must satisfy the
relation:

Pind(n, k,p) ≤ P `(n1, n2, k,p) ≤ P u(n, k,p), ∀ n1, n2 : 1 ≤ n1 ≤ n, n2 = n− n1

We additionally compare these bounds with the following three valid upper bounds
on the tail probability P (

∑n
i=1 c̃i ≥ k) for k ∈ [n]:

Poisson approximation:
n∑
r=k

e−λ
λr

r!

Comonotonic bound:
n∑
r=k

p(n−r+1) − p(n−r) = p(n−k+1)

Markov bound:
∑n

i=1 pi
k

(3.59)

where λ = E [
∑n

i=1 c̃i] =
∑n

i=1 pi and p(i) is the ith order statistic of the marginal prob-
ability vector p when its components are arranged in ascending order. Le Cam (1960)
showed that the Poisson distribution can be used to approximate the probability dis-
tribution of sums of non-identical independent Bernoulli random variables (Poisson bi-
nomial distribution), where the error is minimal when the probabilities are small. The
Chen-Stein (see Stein, 1972; Chen, 1975) approximation method extends this idea to
compute error bounds for the Poisson approximation of the distribution of sums of de-
pendent Bernoulli variables. This method provides the best approximation when the
probabilities are small and the variables are close to being independent. The utility
and far-reaching impact of the Chen-Stein method has been illustrated through several
applications in graph theory, combinatorics, molecular biology (see Arratia, Goldstein,
and Gordon, 1990, for a non-exhaustive list of examples). The comonotonic distribution
is known to be extremal for supermodular functions (Tchen, 1980; Müller, 1997). How-
ever in our context, for the tail probability function, it provides a valid lower bound on
P u(n, k,p). Similarly the Markov bound is known to be tight for identical extremally
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dependent Bernoulli variables (Rüger, 1978), but in our context provides a valid upper
bound on P u(n, k,p).

Numerical results with limited dependency

In this section, we compare our limited dependency bounds computed from the compact
linear program (3.47) with the two extremes of extremal dependency and complete in-
dependence and the three bounds in (3.59). Figure 3.6 shows the six bounds for n = 30
variables where the limited dependency bounds (in purple) have been selectively shown
for n1 = 6, 10, 14, 18, 22, 26 (left to right). In Figure 3.6a, we consider non-identical
small marginal probabilities by uniformly and independently generating the entries of
p between 0.1 and 0.15 while in Figure 3.6b, we uniformly generate the probabilities in
[0, 1].
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(a) Small heterogenous probabilities p
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FIGURE 3.6: Limited dependency: Step plots of upper bounds with n = 30

It can be observed from both figures that with change in n1, n2, the limited depen-
dency bounds P `(n1, n2, k,p) move away faster from the extremally dependent bound
P u(n, k,p) than from the independent tail probability Pind(n, k,p). More specifically,
when n1 changes from n to n − 1, there is a larger deviation of P `(n1, n2, k,p) from
P u(n, k,p) (in blue) than from Pind(n, k,p) (in red), when n2 changes from n to n − 1.
In other words, introducing a small degree of independence into the extremal depen-
dence model has a larger impact on the extremal tail probability than by introducing a
small degree of dependence into the mutual independence model. As a sanity check, it
was observed that when n2 = n − 1, there is exactly one variable α1 ∈ M1 and since it
is independent of all variables in M2, the entire set of variables M is independent and
thus we retrieve the bound Pind(n, k,p).
The Poisson approximation closely follows the independent tail probabilityPind(n, k,p)
in Figure 3.6a due to the assumption of small probabilities while in Figure 3.6b, it ini-
tially underestimates the independent tail probability (for k ≤ 15) and then overes-
timates it while remaining close to the limited dependency bounds with high degree
of independence (n2 close to n). This observation is consistent with the results in the
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literature which state that the Poisson approximation provides better approximations
of tail probabilities when the variables are close to being independent (see Section 4 in
Chen, 1975). Due to the almost identical nature of the small probabilities in Figure 3.6a,
the comonotonic bound plot remains almost flat for k ≥ 1 and the Markov bound is
very close to the extremally dependent bound Pu(n, k,p) while this is not true in Fig-
ure 3.6b due to the non-identical probabilities.
We next provide a more comprehensive view of Figure 3.6 with 3D plots of the absolute
deviation of the limited dependency bounds from P u(n, k,p) and P ind(n, k,p) (over an
added dimension n1).

FIGURE 3.7: 3D plots of absolute deviation from extremal dependency bounds (left) and
independent tail probability (right) with n = 30, small heterogenous probabilities p

FIGURE 3.8: 3D plots of absolute deviation from extremal dependency bounds (left) and
independent tail probability (right) with n = 30, random probabilities p

Figures 3.7 and 3.8 show the plots with randomly generated non-identical small
marginals p and general probabilities p ∈ [0, 1]n respectively. The deviation in both
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figures is significant when the bounds being compared are non-trivial, i.e., when at least
one of them is not zero or trivially one. The deviation starts increasing from a certain k
and reaches a peak before decreasing as both bounds tend to zero. This peak is reached
much earlier (for k ≤ n/2) in Figure 3.7 than in Figure 3.8 (for k ≥ n/2) due to the
small probabilities. The observation made in Figure 3.6 that introducing a small de-
gree of independence into the extremal dependence model has a larger impact on the
extremal tail probability than by introducing a small degree of dependence into the mu-
tual independence model is corroborated in both the 3D plots, where with n1 = 29 the
deviation from P u(n, k,p) (left plots in blue) is already significant while with n1 = 1,
the deviation from P ind(n, k,p) (right plots in red) is still close to zero.

3.4 Bounds on expected stop-loss functions

In this section, we revisit the objective with expected stop-loss functions considered in
Section 2.7.3, but in the context of extremally dependent random variables. We denote
the tight upper bound on the expected stop-loss function over the set of distributions θ
in the univariate ambiguity set Θu as:

Eu(n, k,p) = max
θ∈Θu

Eθ
[(∑n

j=1 c̃j − k
)+
]
, ∀k ∈ [n]

which can be computed as the optimal value of the following exponential-sized linear
program:

Eu(n, k,p) = max E
[(∑n

j=1 c̃j − k
)+]

s.t.
∑

c∈C:ci=1

P(c) = pi, ∀i ∈ [n],∑
c∈C

P(c) = 1,

P(c) ≥ 0 ∀c ∈ C

(3.60)

Expected value functions like that in (3.60) involving sums of extremally dependent
Bernoulli random variables find application in many problems. For example, ci could
represent the uncertain scenario where the loss accrued from the ith financial instru-
ment exceeds a given limit with a probability pi, where the correlation between the
instruments is assumed to be unknown. Then, Eu(n, k,p) represents the maximum
possible average number of non-viable extremally dependent instruments exceeding a
threshold k. For further details, we refer the interested reader to Dhaene et al. (2002b),
who provide a comprehensive overview of the actuarial theory on this topic while
Dhaene et al. (2002a) demonstrate their usefulness in several financial and actuarial
applications.
This next theorem derivesEu(n, k,p) as the optimal value of a compact linear program,
using familiar techniques of considering the linear relaxation of the dual separation
problem, as used throughout this chapter. We further use this compact linear program
to retrieve a familiar closed-form expression for Eu(n, k,p) in Theorem 14.
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3.4.1 Compact linear program and primal proof of correctness

Theorem 13. The exponential-sized linear program in (3.60) is equivalent to the following
compact linear program:

Eu(n, k,p) = max
n∑
i=1

yi − ky0

s.t. 0 ≤ y0 − yi ≤ 1− pi, ∀i ∈ [n],

0 ≤ yi ≤ pi, ∀i ∈ [n],

n∑
i=1

yi ≥ ky0

(3.61)

Proof. Since it is only the objective function which has changed from probability in
(3.1) to expectation in (3.60), the proof broadly parallels that of Theorem 8 and thus
we only preserve the most important steps and highlight differences for the purpose of
exposition. Consider the dual of the large-sized linear program (3.60):

P u(n, k,p) = min
n∑
i=1

λipi + λ0

s.t.
n∑
i=1

λici + λ0 ≥

 n∑
j=1

cj − k

+

, ∀c ∈ C,

λi free, ∀i ∈ [n],
λ0 free

(3.62)

Splitting the dual (3.62) constraints into two parts we have:

n∑
i=1

λici + λ0 ≥ 0 ∀c ∈ C (3.63a)

n∑
i=1

λici + λ0 ≥

 n∑
j=1

cj − k

 ∀c ∈ C :

n∑
i=1

ci ≥ k (3.63b)

As usual, we next convert both the above constraint sets into optimization problems
with {ci, i ∈ [n]} as decision variables for fixed {λ0, λi, i ∈ [n]}. The first constraint set
is exactly the same as in (3.5a) and thus handled identically.
The second constraint set (3.63b) can be similarly transformed as:

λ0 + k +

{
min

n∑
i=1

(λi − 1) ci :

n∑
i=1

ci ≥ k, 0 ≤ ci ≤ 1,∀i ∈ [n]

}
≥ 0 (3.64)

where once again, the linear program relaxation yields integer extreme points due to
the totally unimodular structure of the constraint set.
Dualizing the linear program relaxations and forcing a single instance to satisfy the
resulting dual as in (3.8) and (3.10), and replacing both constraint sets (3.63a)and (3.63b)
by the resultant compact set of equations, the transformed version of the dual (3.62) is:
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min
∑n

i=1 λipi + λ0

s.t. λ0 −
∑n

i=1wi ≥ 0,

λ0 + kv0 −
∑n

i=1 vi + k ≥ 0,

λi + wi ≥ 0, ∀i ∈ [n],

λi + vi − v0 − 1 ≥ 0, ∀i ∈ [n],

wi ≥ 0, ∀i ∈ [n],

vi ≥ 0, ∀i ∈ [n],

v0 ≥ 0

(3.65)

Finally, we dualize (3.65) to get exactly the same linear program as (3.12) except that

the objective function is
n∑
i=1

yi − ky0 instead of y0. Eliminating redundant variables

x0, xi, ∀i ∈ [n], we obtain the compact primal linear program (3.61).

Primal proof of correctness

Similar to earlier sections, we can prove the direct equivalence of the large-size and
compact primal linear program formulations with the expected stop-loss objective with-
out going through the dual formulations, where the interpretation of the decision vari-
ables of the compact primal formulation is exactly similar to that of the tail probability
objective function in Lemma 7.

Proposition 10. The large-sized primal linear program (3.60) is equivalent to the compact
primal linear program (3.61), where for any extremal distribution θ? ∈ Θu of the large-sized
linear program and any k ∈ [n], the corresponding optimal solution (y0, y1, . . . , yn) of the
compact linear program satisfies

y0 = Pθ? (
∑n

t=1 c̃t ≥ k)

yi = Pθ? (
∑n

t=1 c̃t ≥ k, c̃i = 1) , ∀i ∈ [n]
(3.66)

Proof. Given a feasible solution Pθ(c), ∀c ∈ C to the exponential-sized linear program
(3.60) for some θ ∈ Θu, construct a feasible solution of the compact linear program by
aggregating the probabilities exactly similar to that of the tail probability objective in
(3.15). The objective function of the compact linear program (3.61) can be written as

n∑
i=1

yi − ky0 =

n∑
i=1

Pθ

(
n∑
t=1

c̃t ≥ k, c̃i = 1

)
− kPθ

(
n∑
t=1

c̃t ≥ k

)

=
n∑
`=k

n∑
i=1

Pθ

(
n∑
t=1

c̃t = `, c̃i = 1

)
− k

n∑
`=k

Pθ

(
n∑
t=1

c̃t = `

)

=
n∑
`=k

`Pθ

(
n∑
t=1

c̃t = `

)
− k

n∑
`=k

Pθ

(
n∑
t=1

c̃t = `

)

= Eθ
[
(
∑n

j=1 c̃j − k)+
]
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which coincides with that of the exponential-sized linear program (3.60). The rest of
the proof follows that of Lemma 7 and we omit further details here for the sake of
brevity.

The next theorem uses the compact linear program formulation derived in Theorem 13
to retrieve a well-known closed-form expression for Eu(n, k,p).

Theorem 14. (Dhaene et al., 2000) Sort the probabilities in increasing value as 0 ≤ p1 ≤ p2 ≤
. . . ≤ pn ≤ 1. Then, the tight upper bound Eu(n, k,p) admits a closed-form expression in the
form of the comonotonic bound, i.e.,

Eu(n, k,p) =
n−k∑
i=1

pi, k ∈ [n] (3.67)

Proof. We consider the dual of the compact linear program (3.61) as follows:

Eu(n, k,p) = min
n∑
i=1

wipi +
n∑
i=1

vi(1− pi)

s.t.
n∑
i=1

vi −
n∑
i=1

ui + kλ+ k ≥ 0

ui − vi + wi − λ− 1 ≥ 0, ∀i ∈ [n],

ui ≥ 0, ∀i ∈ [n],

vi ≥ 0, ∀i ∈ [n],

wi ≥ 0, ∀i ∈ [n],

λ ≥ 0

(3.68)

Table 3.3 provides an optimal solution of the compact primal-dual linear program pair
(3.61)-(3.68) that attains the comonotonic closed-form bound in Theorem 14.

Range of k Primal optimal solution (3.61) Dual optimal solution (3.68)
Optimum attained

(Eu(n, k,p))

k ∈ [n]

yi =


pi, i ≤ n− k

pn−k+1, i ≥ n− k + 1

y0 = pn−k+1

wi =

{
1, i ≤ n− k

0, i ≥ n− k + 1

ui = 1− wi, ∀i ∈ [n],
vi = 0, ∀i ∈ [n],
λ = 0

n−k∑
i=1

pi

k = 0 yi = pi, ∀i ∈ [n],
y0 = 1

ui = 0, ∀i ∈ [n],
vi = 0, ∀i ∈ [n],
wi = 1, ∀i ∈ [n],
λ = 0

n∑
i=1

pi

TABLE 3.3: Optimal solution that attains the comonotonic bound (3.67)
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It can be easily verified that the above solutions are both primal and dual feasible and
attain the desired bound.
Connection to earlier work: Expected value functions like that in (3.60) involve sums
of random variables which are commonly encountered in many applied problems.
With continuous random variables whose marginal distributions are known, Dhaene
et al. (2002b) and Dhaene et al. (2002a) provide interesting results with applications in
actuarial science and mathematical finance. The fact that the comonotonic copula forms
the extremal distribution for the expected stop-loss objective function in (3.60) over the
set of distributions θ ∈ Θu is well known in the literature. While Tchen (1980) and
Müller (1997) provide proofs using properties of supermodular functions, Dhaene et
al. (2000) and Dhaene et al. (2002b) provide alternative proofs (see Section 5 of Dhaene
et al., 2002b, and references therein for other proofs). However, the use of the compact
linear programming formulation in (3.61) to derive this bound does not appear in the
literature to the best of our knowledge.

3.4.2 Lower bounds

We now extend the results of the previous section to show that the corresponding lower
bounds on the expected stop-loss functions can be similarly computed. Denote by
Eu(n, k,p) the tight lower bound on this function over the set of distributions θ in
the univariate ambiguity set Θu, i.e.,

Eu(n, k,p) = min
θ∈Θu

Eθ
[(∑n

j=1 c̃j − k
)+
]
, ∀k ∈ [n]

Corollary 8. The tight lower bound Eu(n, k,p) can be computed as the optimal value of the
following compact linear program:

Eu(n, k,p) = min

n∑
i=1

yi − ky0

s.t. 0 ≤ y0 − yi ≤ 1− pi, ∀i ∈ [n],

0 ≤ yi ≤ pi, ∀i ∈ [n],

n∑
i=1

yi ≥ ky0 + (S1 − k)+

(3.69)

where S1 = E (
∑n

i=1 c̃i) =
∑n

i=1 pi is the first binomial moment.

Proof. We first write down the dual of the minimization version of (3.60) which com-
putes the tight lower bound as its optimum value:

Eu(n, k,p) = max

n∑
i=1

λipi + λ0

s.t.
n∑
i=1

λici + λ0 ≤

 n∑
j=1

cj − k

+

, ∀c ∈ C,

λi free ∀i ∈ [n],
λ0 free

(3.70)
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The constraints in the dual (3.70) can be split up as follows:

n∑
i=1

λici + λ0 ≤ 0, ∀c ∈ C :
n∑
i=1

ci ≤ k (3.71a)

n∑
i=1

λici + λ0 ≤

 n∑
j=1

cj − k

 , ∀c ∈ C :
n∑
i=1

ci ≥ k (3.71b)

Note that we are forced to retain the k in both the above two sets of constraints unlike
in (3.24a)-(3.24b) where we could absorb k into (3.24a) only. This is because the in-
equalities here do not have a constant term like 1 (which appears due to the probability
objective in (3.24b)) on the right hand side, but rather a function of the random vector
c̃ in the form of

∑n
j=1 cj − k. Thus, there is no constant value which can upper bound

the left hand side of (3.71b) for all c ∈ C. We now proceed in similar steps as earlier for
the upper bound but reformulate the above constraint sets as maximization problems
instead of minimization:

λ0 +

{
max

n∑
i=1

λici :
n∑
i=1

ci ≤ k, 0 ≤ ci ≤ 1, ∀i ∈ [n]

}
≤ 0

λ0 + k +

{
max

n∑
i=1

(λi − 1) ci :
n∑
i=1

ci ≥ k 0 ≤ ci ≤ 1, ∀i ∈ [n]

}
≤ 0

where once again, the linear program relaxation yields integer extreme points due to
the totally unimodular structure of the constraint set. Similar techniques of dualizing
and forcing a single instance to satisfy the resulting dual leads us to the following pri-
mal:

min
n∑
i=1

yi − ky0

s.t. x0 + y0 = 1,

xi + yi = pi, ∀i ∈ [n],

x0 − xi ≥ 0, ∀i ∈ [n],

y0 − yi ≥ 0, ∀i ∈ [n],

n∑
i=1

yi ≥ ky0

n∑
i=1

xi ≤ kx0

xi ≥ 0, ∀i ∈ [n],
yi ≥ 0, ∀i ∈ [n],
x0 ≥ 0,
y0 ≥ 0

(3.72)

Note the similarities and differences in structure of (3.72) to (3.13) with an additional
constraint

∑n
i=1 xi ≤ kx0 and the different objective along with being a minimization

problem instead of maximization. The compact linear program (3.69) whose feasible
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region is very similar to that of (3.61) except the extra (S1 − k)+ term in the last con-
straint, then follows by eliminating the x0, xi, i ∈ [n] variables.

Theorem 15. The tight lower bound Eu(n, k,p) admits a closed-form expression in the form
of the Jensen (1906) bound, i.e.,

Eu(n, k,p) = (S1 − k)+ , k ∈ [n] (3.73)

Proof. We consider the dual of the compact linear program (3.69) as follows:

Eu(n, k,p) = min λ (S1 − k)+ −
n∑
i=1

wipi −
n∑
i=1

vi(1− pi)

s.t.
n∑
i=1

vi −
n∑
i=1

ui + kλ− k ≥ 0

ui − vi + wi − λ+ 1 ≥ 0, ∀i ∈ [n],

ui ≥ 0, ∀i ∈ [n],

vi ≥ 0, ∀i ∈ [n],

wi ≥ 0, ∀i ∈ [n],

λ ≥ 0

(3.74)

Table 3.4 shows that there exists an optimal solution of the compact primal-dual linear
program pair (3.69)-(3.74) that attains the Jensen (1906) bound.

Range of k Primal optimal solution (3.69) Dual optimal solution (3.74)
Optimum attained

(Eu(n, k,p))

k ≤ S1
yi = pi, ∀i ∈ [n],
y0 = 1

λ = 1,
ui = 0, ∀i ∈ [n],
vi = 0, ∀i ∈ [n],
wi = 0, ∀i ∈ [n]

S1 − k

k > S1
yi = 0, ∀i ∈ [n],
y0 = 0

λ = 1
ui = 0, ∀i ∈ [n],
vi = 0, ∀i ∈ [n],
wi = 0, ∀i ∈ [n]

0

TABLE 3.4: Optimal solution that attains Jensen (1906) bound (3.73)

It can be easily verified that the above solutions are both primal and dual feasible and
attain the desired bound.
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Connection to earlier work: It can be verified that the following aggregated linear
program proposed by Boros and Prékopa (1989):

BPu(n, k,p) = min
n∑

`=k+1

(`− k)v`

s.t.
n∑
`=1

`v` = S1

n∑
`=0

v` = 1

v` ≥ 0, ∀` ∈ [0, n],

(3.75)

also attains the Jensen (1906) bound with the primal and dual feasible basis indices

{i, j} : i = bS1c , j = dS1e .

However, the tightness of the bound with general disaggregated univariate probabil-
ities as shown in Theorem 15 does not seem to be explicitly known to the best of our
knowledge. We also note that the corresponding maximization version of the aggre-
gated linear program in (3.75) does not attain the upper bound in Theorem 14 unless
the marginals are identical, since the comonotonic bound needs more information (than
that provided by the first binomial moment S1) for general non-identical marginals.
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3.5 Summary of Part I and future directions

This section summarizes the results in Part I of this dissertation and provides some
useful directions for future research. Table 3.5 provides a high-level view of the most
important results.

Extremal dependence Pairwise independence t-wise independence (t ≥ 3)

Tail Probability / Expected
stop-loss functions General probabilities

p ∈ [0, 1]n

Identical
probabilities
p ∈ [0, 1])

General probabilities
p ∈ [0, 1]n

Identical probabilities
p ∈ [0, 1]

max

P
(∑n

t=1 ct ≥ k
)

Bernoulli variables

Boros and Prékopa
(1989)
X?

k = 1

Boros and Prékopa (1989)

Xz

Rüger (1978)
X

Hunter (1976)-Worsley
(1982)
X?

Discrete variables k ≥ 2 (Improved bounds)

Ramachandra and
Natarajan (2021)

X??

Ramachandra and
Natarajan (2021)

X??

k = 1

min

P
(∑n

t=1 ct ≥ k
) Rüger (1981)

X
Boros and Prékopa

(1989)
X?

Bonferroni (1936)
(Tight for small probabilities only)

X?

Boros and Prékopa (1989)

Xz

max / min∑n
l=0 wlPθ(

∑n
i=1 c̃i ≥ l)

Ramachandra and
Natarajan (2021)

Xzz

max

E
[(∑n

t=1 ct − k
)+] Dhaene et al. (2000)

(comonotonic bound)
X

Ninh, Hu, and
Allen (2019)

X?

Boros and Prékopa (1989)

Xz

min

E
[(∑n

t=1 ct − k
)+] Jensen (1906)

X?

Ninh, Hu, and
Allen (2019)

X?

Boros and Prékopa (1989)

Xz

X: Earlier known tight closed-form bound with alternative proof X?
: Closed-form bound known but tightness unknown

X??
: Unknown closed-form bound Xz

: Known linear program bound but tightness unknown, Xzz
: Unknown linear program bound

TABLE 3.5: Summary of tight bounds in Part I

Summary:
The results in Table 3.5 can be categorized as follows:

i) Closed-form bounds that are known in the literature and whose tightness is also established
under the given input assumptions (indicated with X):
Bounds such as Rüger (1978), Rüger (1981), and Dhaene et al. (2000) are known to
be tight when only the univariate marginal probabilities are known. In this case, we
provided alternative proofs in Sections 3.1.1 and 3.4, that involved deriving a com-
pact linear programming formulation, whose optimal solution could be captured as a
closed-form expression.

ii) Closed-form bounds that are known in the literature but whose tightness under assumptions
of extremal dependence or pairwise independence has not been established (indicated with X?):
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Closed-form bounds such as Jensen (1906), Bonferroni (1936), Boros and Prékopa (1989),
and Ninh, Hu, and Allen (2019) can be expressed in terms of the binomial moments
alone. While they are known to be tight with such aggregated information, we addi-
tionally proved their tightness in some special instances of disaggregated information
such as when the variables are identical, extremally dependent or pairwise indepen-
dent in Sections 3.4.2, 2.6, 2.4.1 and 2.7.3 respectively. The Hunter (1976)-Worsley (1982)
bound in (2.15) requires more information than these aggregated bounds (such as the
sum of bivariate probabilities in each spanning tree on the complete graph), and it
was shown to be tight with pairwise independent variables for any marginal vector
p ∈ [0, 1]n. To the best of our knowledge, this result is not known thus far in the litera-
ture dedicated to this topic. In fact, paraphrasing from Boros et al. (2014) (section 1.2),
“As far as we know, in spite of the several studies dedicated to this problem, the com-
plexity status of this problem, for feasible input, seems to be still open even for bivariate
probabilities”. With pairwise independent random variables, feasibility is guaranteed
and Theorem 2 shows that the tightest upper bound is computable in polynomial time
(in fact in a simple closed form), thus providing a partial positive answer towards this
question.

iii) Closed-form bounds derived in our work that do not appear to be known in the literature
and which are not necessarily tight (indicated with X??):
In Theorem 11 and Corollary 6 of Section 3.2, we derived closed-form upper bounds
on the tail probability of the sum of identical discrete integer-valued random variables
which do not appear to be known in the literature. Numerical illustrations in Exam-
ple 9 demonstrated that these upper bounds are tight in many instances for identi-
cal and symmetric identical marginals. In Section 2.3, for k ≥ 2, we proposed new
bounds exploiting ordering of the probabilities, which are at least as good as the un-
ordered bounds. To the best of our knowledge the idea of ordering has not been ex-
ploited thus far to tighten probability bounds for pairwise independent random vari-
ables. Section 2.3.1 demonstrated through numerical examples that while the Boros
and Prekopa bound is uniformly the best performing of the three ordered bounds, the
Schmidt, Siegel and Srinivasan bound shows the best improvement with ordering, in
the examples considered.

iv) Bounds computable in polynomial time as the optimal solution of a known aggregated linear
program but whose tightness under assumptions of identical t-wise independent variables has
not been established (indicated with Xz):
The aggregated linear program proposed in Boros and Prékopa (1989) was shown to
provide the tightest bound on the tail probability of sums of identical t-wise (t ≥ 2)
independent variables in Section 2.7.1. While closed-form bounds can be derived for
t = 2, 3, the optimal value of the linear program provides the tight bounds for t ≥ 4.
The result in Proposition 5 can be easily extended to expected stop-loss functions such
as those in the last two rows of Table 3.5.

v) Bounds computable as the optimal solution of a compact linear program derived in our work
that do not appear to be known in the literature (indicated with Xzz):
In Section 3.3, we derived a compact linear program that computes the tightest upper
and lower bounds on the weighted tail probability function which does appear to be
known in the literature. Similarly, in Section 3.2, we derived a compact linear pro-
gram that computes valid upper bounds on the tail probability of the sum of discrete
real-valued random variables which also does not seem to be known in the literature.
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Numerical results in Example 8 showed that the upper bounds derived were tight in
many instances of randomly generated non-identical marginal probabilities and with
increasing number of random variables n. The results with discrete variables with in-
teger support were generalized to variables with real support in Section 3.2.4.

vi) Results of independent interest
In Section 2.2.1, we established with Lemma 1 that given an arbitrary univariate prob-
ability vector p ∈ [0, 1]n and transformed bivariate probabilities pipj/p where p ∈
[maxi pi, 1], a Bernoulli random vector c̃ consistent with the given information always
exists. This feasibility result is significant, since with general bivariate probabilities
pij , even verifying if there exists a feasible joint distribution is already known to be a
NP-complete problem (Pitowsky, 1991).

vii) Applications of derived bounds:

a) Star-shaped system and limited dependency:
The usefulness of the Rüger (1978) bound in Theorem 9 was demonstrated with
an application to a star-shaped marginal structure system in Section 3.1.4, while
the usefulness of the weighted tail probability bounds in Section 3.3 was demon-
strated with an application to the limited-dependency system in Section 3.3.2, where
the conservativeness of extremal dependency was alleviated by considering vary-
ing degrees of dependence and independence among the variables.

b) Correlation gap analysis:
A 4/3 attainable upper bound on the ratio of the Boole’s union bound and the
pairwise independent bound was shown in Proposition 1, by using the result de-
rived in Theorem 2. Instances when the correlation gap analysis can be improved
with pairwise independence instead of extremal dependence, for a specific non-
decreasing, non-negative, submodular set function were presented in Example 2.
Section 2.5 generalizes these results to show that, with n = 2 random variables,
for any non-decreasing, non-negative, submodular set function, the upper bound
on the correlation gap can be improved from e/(e − 1) to 4/3 while it can be ar-
bitrarily large with supermodular set functions under similar assumptions. Even
for the simple case of n = 2 variables, this result does not appear to be known in
the literature.

c) Tightness of existing bounds:
Section 2.4 provided instances when the unordered and ordered bounds are tight.
The tightness of the Boros and Prekopa bound for identical pairwise independent
variables established in Theorem 4 was used in Section 2.4.1 to identify instances
when other existing unordered bounds are tight. Section 2.4.2 demonstrated the
usefulness of the ordered bounds by identifying an instance with n − 1 identical
probabilities (along with additional conditions on the identical probability and k),
when the ordered bounds are tight.

d) Small deviation bounds:
In Section 2.7.2, for the case of identical marginals, we identified instances when
non-trivial and tight small deviation bounds are provided by the Boros and Prekopa
bound while the Chebyshev and Schmidt, Siegel, Srinivasan bounds are trivial.
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Future research questions:
We believe several interesting research questions arise from the results in Part I that
need to be answered, a few of which we list below:

(a) To the best of our knowledge, the computational complexity of evaluating (or ap-
proximating) the bound P (n, k,p) for general n, k and p ∈ [0, 1]n is still unresolved.
While we provide the answer in closed form for k = 1 in Section 2.2, a natural question
that arises is whether the tight bounds for general k ≥ 2 with pairwise independent
random variables are efficiently computable (or efficient to approximate) using linear
program formulations? We leave this for future research.

(b) The upper bound of 4/3 in Section 2.2.3 is derived for the ratio between the max-
imum probability for the union of extremally dependent events and the probability of
the union of pairwise independent events. Similarly, the 4/3 bound in Section 2.5 is
derived for n = 2 random variables when pairwise independence is identical to mu-
tual independence. We conjecture that this upper bound is valid for the expected value
of all non-decreasing, non-negative, submodular functions (of which the probability of
the union is a special case) for any n ≥ 2 and leave it as an open question.

(c) While we proved that the tightest upper bound on the union of pairwise indepen-
dent events is computable in a closed-form expression in Theorem 2, the complexity
status of the Boolean probability bounding problem (Boros et al. (2014)) for general
bivariates appears to be unresolved even if feasibility is guaranteed.

(d) Tree bounds for sums of extremally dependent Bernoulli random variables have
been studied in Padmanabhan and Natarajan (2021) under the assumption that the
bivariate probabilities are specified on a tree structure. If we additionally enforce pair-
wise independence, these results will provide valid upper bounds on P (n, k,p), which
can then be compared with our improved bounds in Section 2.3.

(e) It would be of interest to perform a sensitivity analysis of the factors contributing
to the performance gap of the improved bounds in Section 2.3 and further attempt to
quantify the improvement beyond the numerical results in Section 2.3.1.

(f) The weighted tail probability bounds in Section 3.3 can be extended to pairwise
independent Bernoulli variables by using the improved bounds from Section 2.3.1 as
follows:

max
θ∈Θpw

n∑
l=0

wlPθ(
n∑
i=1

c̃i ≥ l) ≤
n∑
l=0

wlP (n, l,p)

where P (n, l,p) = max
θ∈Θpw

Pθ(
∑n

i=1 c̃i ≥ l) and the bounds from Theorem 3 can be di-

rectly applied to provide valid upper bounds on the required weighted tail probability,
although the tightest bound may not be efficiently computable.

(g) While we proved in Section 2.6 that the tight lower bound P (n, 1,p) reduces to
the Bonferroni (1936) bound for small probabilities, it remains an open question if the
tight lower union bound and more generally P (n, k,p) (for any k ≥ 2) are efficiently
computable for any p ∈ [0, 1]n?

(h) In Section 2.7.1, we proved that the tight upper and lower bounds for tail proba-
bilities of sums of identical t-wise independent variables is computable as the optimal
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value of an aggregated linear program. For non-identical marginal probabilities, it re-
mains an open question if the pairwise independence results from Sections 2.2 and
2.3 for the union bound and improved bounds respectively can be extended to t-wise
independent variables.

(i) Can the results in Part I for sums of finite set of Bernoulli random variables be
extended to sums of countably infinite set of Bernoulli variables?

(j) For expected stop-loss functions, while we provided in Section 2.7.3 that tight upper
and lower bounds are captured in a closed-form expression for identical pairwise inde-
pendent variables, it is not clear if E(n, k,p), and E(n, k,p) are efficiently computable
for any k ∈ [n] and p ∈ [0, 1]n.

(k) Extending the work of Padmanabhan et al., 2021, it would be of interest to investi-
gate if the efficient computability of the bounds

max
θ∈Θu

Pθ(Z(c̃) ≥ k), ∀k ∈ [n]

(whereZ(c̃) is the optimal value of a combinatorial optimization problem as considered
in 3.2), flows over to pairwise independent Bernoulli random variables and compact
0/1 V-polytopes.
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Part II

Satisficing with Uncertainty Sets
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Chapter 4

Robust Conic Satisficing

In Part I, we considered bounds on tail probability and expected stop-loss functions
of sums of random variables when the joint distribution satisfies conditions on the
univariate probabilities (Chapter 3) and pairwise independence (Chapter 2). In this
part of the dissertation, uncertainty is viewed from the lens of sets instead of distri-
butions. More specifically, in the context of a recently proposed framework known as
robust satisficing, we consider finding tractable solutions or approximations to uncertain
conic optimization problems, when the uncertainty is adversarially chosen from an el-
lipsoidal or polyhedral support set. The suggested formulation employs a constraint
function that evaluates to the optimal objective value of a standard conic optimization
problem and generalizes several existing models considered in the recent literature.
Numerical examples clearly illustrate the benefits of this new framework over classical
robust optimization models. The technical content of this chapter is primarily derived
from our paper Ramachandra, Rujeerapaiboon, and Sim (2021).

4.1 Introduction

“Of the impermanent there is no certainty” - Gita (2.16)

Uncertainty is an integral part of optimization problems without accounting for which,
the deterministic optimal solution is fragile and does not provide meaningful insights
(Ben-Tal, El Ghaoui, and Nemirovski, 2009). While the need to introduce uncertainty
is well documented, the form in which it appears varies. In stochastic optimization
problems, the uncertainty appears as random variables that are governed by an ex-
plicit probability distribution, which is assumed to be either available or else has to be
estimated from historical data (Shapiro, Dentcheva, and Ruszczyński, 2014; Birge and
Louveaux, 2011). On the other hand, robust optimization only assumes that the un-
certainty dwells in a restricted set, also known as uncertainty set, without any further
statistical information (Soyster, 1973; Ben-Tal and Nemirovski, 1998; El Ghaoui, Oustry,
and Lebret, 1998). Robust optimization minimizes the worst-case cost while enforcing
that the constraints are satisfied for every realization of the uncertainty within this set.

The selling point of robust optimization models is that their computational tractabil-
ity is typically on par with their deterministic counterparts for many classes of con-
straints and characterizations of the uncertainty set (Bertsimas and Sim, 2003; Bert-
simas and Sim, 2004; Bertsimas and Sim, 2006). Ben-Tal et al. (2004) extend robust
optimization to an adaptive optimization framework, where recourse decisions can
adapt to the uncertain parameters that are realized. Not all recourse adaptations would
lead to computationally tractable optimization problems, and Ben-Tal et al. (2004) pro-
pose a tractable safe approximation by restricting the recourse to an affine function
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of the uncertain parameters (see also Delage and Iancu, 2015; Kuhn, Wiesemann, and
Georghiou, 2011; Bertsimas, Iancu, and Parrilo, 2010; Iancu, Sharma, and Sviridenko,
2013). Distributionally robust optimization, which generalizes robust optimization, as-
sumes that the probability distribution governing the uncertain parameters lies in an
ambiguity set of distributions characterized by known properties of the unknown data-
generating distribution (Delage and Ye, 2010; Wiesemann, Kuhn, and Sim, 2014; Bert-
simas, Sim, and Zhang, 2019). In the data-driven framework, distributionally robust
optimization models with Wasserstein ambiguity sets (Mohajerin Esfahani and Kuhn,
2018), or Φ-divergence based ambiguity sets (Ben-Tal et al., 2013) could effectively over-
come poor out-of-sample performance. Chen, Sim, and Xiong (2020) provide a unified
framework for modeling distributionally robust optimization problems including data-
driven models, and develop an algebraic modeling toolbox “RSOME” for this purpose.

Long, Sim, and Zhou (2021) recently proposed a new paradigm to model uncer-
tainty called robustness optimization, which, in the stochastic-free version, corresponds
to a case of the GRC (globalized robust counterpart)-sum model of Ben-Tal et al. (2017).
Unlike robust optimization methods, which only hedge against pre-defined uncer-
tainty, robustness optimization offers full protection by giving nature a free-hand to
vary over the entire uncertainty support. The robustness optimization model com-
pensates for this increased protection by allowing the constraints to be violated while
simultaneously controlling the degree of infeasibility. The decision maker has the flexi-
bility to choose the degree of sub-optimality relative to the nominal objective value, by
specifying a target, unlike the robust optimization model, where the size of the uncer-
tainty set needs to be known apriori. Simon (1955), who proposes the term satisficing,
argues that target plays an important role in decision making, especially in complex
situations involving uncertainty. To emphasize the role of the target, we prefer to use
the term robust satisficing in place of robustness optimization proposed in Long, Sim, and
Zhou (2021). The same term has also been used in Schwartz, Ben-Haim, and Dacso
(2011) to describe a decision model that maximizes the robustness to uncertainty of
achieving a satisfactory target. The decision criterion in our robust satisficing frame-
work belongs to the family of satisficing decision criteria axiomatized by Brown and
Sim (2009), which has an embedded preference for diversification that, serendipitously,
also leads to computational tractability when used in convex optimization problems.

Since the inception of robust optimization, we now have an arsenal of tools to ad-
dress and solve either exactly, or providing tractable safe approximations for various
kinds of robust optimization models. We wish to highlight Bertsimas and Ruiter (2016)
for proposing the dualizing technique and applying affine dual recourse adaptation to
address an adaptive robust linear optimization problem. When the uncertainty set is
polyhedral, this approach can also be used to provide safe approximations for robust
optimization models with biconvex constraint functions including those with recourse
adaptation (Ruiter, Zhen, and Hertog, 2018; Roos et al., 2020). We use this approach
to obtain solutions to our proposed robust conic satisficing models. We summarize the
contributions of this chapter below:

i) We provide a unifying framework for conic optimization under uncertainty that is
based on minimizing a linear objective function and a constraint function that eval-
uates to the optimal objective value of a standard conic optimization problem. We
demonstrate that it can be used to model a wide range of robust optimization prob-
lems studied in the literature including biconvex linear or quadratic constraint func-
tions (Ben-Tal and Nemirovski, 1998), saddle constraint functions (Ben-Tal et al., 2017),
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non-linear biconvex constraint functions (Roos et al., 2020; Zhen, Ruiter, and Hertog,
2017), adaptive linear optimization model (Ben-Tal et al., 2004; Bertsimas and Ruiter,
2016) and adaptive convex optimization model (Ruiter, Zhen, and Hertog, 2018).

ii) Based on the conic optimization framework, we demonstrate how we could solve
the robust satisficing model, which has potentially infinite number of conic constraints,
either exactly when possible, or safely approximated to a practicably solvable opti-
mization problem. For a biconvex quadratic constraint with a quadratic penalty and
quadratic uncertainty support, we derive the exact reformulation in the form of a
tractable semidefinite optimization problem. Then, for a more general constraint with
polyhedral support and penalty, we derive a tractable safe approximation using the
affine dual recourse adaptation technique first proposed by Bertsimas and Ruiter (2016).
The key challenge is to show that under a condition of complete recourse, and reason-
ably chosen polyhedral support set and penalty function, the exact reformulation and
safe approximations do not lead to infeasible problems as long as the chosen targets
are above the optimum objective obtained when the nominal optimization problem is
minimized.

iii) We explore how the affine dual recourse adaptation can be used to provide safe
approximations to two-stage adaptive conic optimization problems, including those in
the data-driven settings explored in Long, Sim, and Zhou (2021). For the important
case of adaptive linear optimization, we show that the affine dual recourse adaptation
provides a better approximation than the non-affine recourse adaptation proposed in
Long, Sim, and Zhou (2021).

iv) We showcase the modeling and the computational benefits of the robust satisficing
framework over the robust optimization counterpart with three numerical examples:
portfolio selection, log-sum-exp optimization and adaptive lot-sizing problem. Using
Monte-Carlo simulations, we show that the robust satisficing model obtains a family of
solutions that have better statistical performance compared to the solutions generated
by an equivalent robust optimization model. Additionally, we present computational
results to show that the robust satisficing model has a remarkable improvement in
computational time over the robust optimization model.

Notation: We use R to denote the space of reals while R+ and R++ denote the sets of
non-negative and strictly positive real numbers respectively. We use boldface small-
case letters (e.g. x) to denote vectors, capitals (e.g. A) to denote matrices and capital
calligraphic letters to denote sets (e.g. Z) including cones (e.g. K). Rm,n and Lm,n are
used to denote the set of all functions and its sub-class of affine functions, respectively,
from Rm to Rn. The transpose of a vector (matrix) is denoted by x> (A>). A random
vector is denoted with a tilde sign (e.g. z̃), and [n] is used to denote the running index
set {1, 2, ..., n}. We use superscript indexing (e.g. wi) to denote the ith vector (matrix)
among a countable set of vectors {wi} (matrices) and subscript indexing (e.g. Ai) to
denote the ith row of a matrix A. Finally, 0 (1) denotes the vector of all zeros (ones)
and its dimension should be clear from the context, while the identity matrix of order
n is denoted by In.
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4.2 Unifying framework for conic optimization under uncer-
tainty

In this section, we propose a unifying conic optimization framework where the exact
values of the model’s parameters are unknown, or unobservable, but proximal to some
given nominal values. We first consider a deterministic nominal conic optimization prob-
lem as follows:

Z0 = min c>x

s.t. g(x, ẑ) ≤ 0

x ∈ X ,
(4.1)

for a given function g : X × Z 7→ R where the input to the second argument may be
subjected to uncertainty and ẑ ∈ Z is the nominal value. The model’s decision variable
is denoted by the vector x ∈ X ⊆ Rnx and the uncertain parameters are represented
by the vector z ∈ Z ⊆ Rnz , where X and Z are respectively the feasible set and un-
certainty support set. Central to our conic optimization model is how we define the
function g, which is designed to be as expressive as possible, yet allowing the conic
optimization problem under uncertainty to be amendable to tractable reformulations
or approximations. Specifically, the function g is a conic representable function of the
form

g(x, z) = min d>y

s.t. By �K f(x) + F (x)z

y ∈ Rny ,
(4.2)

where f : Rnx 7→ Rnf , F : Rnx 7→ Rnf×nz are affine mappings in x, and K is a
proper cone. Since the decision variable y in Problem (4.2) is made after observing x
and z, we will call y the recourse variable. Indeed, if the cone K is the non-negative
orthant, then the g function would represent the second stage optimization problem
of a standard two-stage stochastic optimization model. However, as we will show, the
function g is sufficiently generic to represent many types of functions considered in the
robust optimization literature, for instance a biconvex quadratic function (Ben-Tal and
Nemirovski, 1998), which are not necessarily associated with a two-stage optimization
problem.

Assumption 1 (Convexity and practicable solvability). We assume that X and Z are com-
pact and convex sets. Moreover, we assume that any convex optimization problem over x ∈ X ,
involving a modest number of additional decision variables, linear and K-conic inequalities are
practicably solvable, i.e., it can be solved to optimality within reasonable time using current
available solvers such as CPLEX, Gurobi, Mosek, SDPT3, among others.

The nominal problem is practicably solvable under Assumption 1. However, most
optimization problems become much harder to solve when they are subject to uncer-
tainty. Note that as x and z appear on the right-hand side of the conic constraint, g
is a biconvex function, and we would expect the problem to be much harder to solve
exactly if the second argument is subject to uncertainty. In the simplest case, where g is
a biaffine function given by

g(x, z) = x>Az + b>x+ c>z + d,
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we can express

g(x, z) = min
y∈R

{
y | y ≥

(
b>x+ d

)
+
(
x>A+ c>

)
z
}
.

In addition, the following example demonstrates how we can convert commonly used
biconvex functions to the form of Problem (4.2).

Example 10 (Common bi-convex function). Consider a biconvex function of the following
form

g(x, z) = h (b(x) +A(x)z)

where h : Rnα 7→ R ∪ {∞} is a convex map, b : Rnx → Rnα , A : Rnx → Rnα×nz are
affine mappings in x. This is a bi-convex function, which is common in classical robust convex
optimization models (see for e.g. Roos et al., 2020). Observe that

g(x, z) = inf y

s.t.

 0
1
0


︸ ︷︷ ︸

B

y �K

 −b(x)
0
−1


︸ ︷︷ ︸

f(x)

+

 −A(x)
0>

0>


︸ ︷︷ ︸

F (x)

z,

where the conic inequality involves a cone

K = cl {(α, β, γ) ∈ Rnα × R× R+ | γh(α/γ) ≤ β, γ > 0} ,

which is proper and convex because a perspective function preserves convexity. For instance, a
quadratic constraint

‖A(x)z + a(x)‖22 + b(x)>z + c(x) ≤ 0

can be expressed as

g(x, z) = min
y∈R

{
y | (A(x)z + a(x), y − b(x)>z − c(x), 1) ∈ K

}
,

where here K denotes the rotated second-order cone given by

K =
{

(α, β, γ) ∈ Rnα × R+ × R+ | α>α ≤ βγ
}
.

In this regard, the two-stage adaptive convex optimization framework proposed in Ruiter, Zhen,
and Hertog (2018) can also be represented in our unified conic optimization framework.

4.2.1 Robust optimization

To better protect the constraints against infeasibility, robust optimization fashions an
uncertainty set of a given size r around the nominal parameter ẑ as follows:

Zr = min c>x

s.t. g(x, z) ≤ 0 ∀z ∈ Ur,
x ∈ X ,

(4.3)
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where Ur is typically a distance-calibrated uncertainty set that contains ẑ and is given
by

Ur = {z ∈ Z | p(z − ẑ) ≤ r} ,

and p(ζ) : Rnz 7→ R+ is a convex penalty function that penalizes deviations of ζ from
the origin such that p(ζ) = 0 if and only if ζ = 0. Hence, U0 = {ẑ} and Ur ⊆ Ur′ for all
0 ≤ r ≤ r′.

It has well been known that the tractability of the robust optimization depends on
the constraint function g along with the characterization of the uncertainty set, and
there are few examples beyond linear constraints that would yield tractable reformu-
lations. Notably, if Ur is a compact convex set, and the function associated with the
robust constraint h(x, z) ≤ 0, ∀z ∈ Ur is a saddle function, i.e., h(x, z) is convex in
x for a given z and concave in z for a given x, then in many interesting examples,
we would be able to use standard robust optimization techniques (see, e.g., Ben-Tal
et al., 2017) to tractably address the robust constraint through a reformulation. As we
will show, although such a saddle function may not necessarily be represented as a g
function of Problem (4.2), we can always transform the constraint to an equivalent one
where the constraint function can be expressed as the g function.

Example 11 (Saddle function). Consider a saddle function h(x, z) : X × Rnz 7→ R ∪
{−∞} on an extended real number line. Specifically, for a given x ∈ X , h(x, z) is upper-
semicontinuous and concave in z ∈ Rnz , and for a given z ∈ Rnz , the function is convex in
x ∈ X . Hence, due the biconjugate property, for a given (x, z) ∈ X ×Rnz , the function can be
rewritten as

h(x, z) = inf
v∈Rnz

{
f(x,v)− v>z

}
where f is the convex conjugate of −h with respect to the second argument as follows

f(x,v) = sup
y∈Rnz

{
v>y + h(x,y)

}
,

which is a jointly convex function, since it can be expressed as a maximum of functions that are
convex in (x,v). Therefore, we can express

h(x, z) = inf
(u,v):(u,v,x)∈Y

{
u− v>z

}
(4.4)

where
Y = {(u,v,x) ∈ R× Rnz ×X | u ≥ f(x,v)}

is an epigraph of a jointly convex function and thus a convex set. However, it should be noted
that Problem (4.4) is not in the same form expressed in Problem (4.2) because the recourse
matrixB in the latter does not depend on z. Note that the robust optimization constraint

h(x, z) ≤ 0 ∀z ∈ Ur

is equivalent to
max
z∈Ur

inf
(u,v):(u,v,x)∈Y

{
u− v>z

}
≤ 0.
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Since Ur is a convex compact set, we can use Sion (1958) minimax result to obtain an equivalent
representation,

max
z∈Ur

inf
(u,v):(u,v,x)∈Y

{
u− v>z

}
≤ 0 ⇐⇒ inf

(u,v):(u,v,x)∈Y
max
z∈Ur

{
u− v>z

}
≤ 0.

Hence, we can express the robust optimization constraint as

g(u,v, z) ≤ 0 ∀z ∈ Ur,

where g(u,v, z) = miny
{
y | y ≥ u− v>z

}
for some first-stage variables (u,v,x) ∈ Y .

Therefore, we can always transform a robust optimization problem with saddle constraint func-
tion to an equivalent robust optimization problem with a biaffine constraint function.

4.2.2 Robust satisficing

Long, Sim, and Zhou (2021) have recently proposed a target-oriented robustness opti-
mization framework for data-driven optimization, which we term as robust satisficing to
emphasize the role of the target in the model specification. We focus on the stochastic-
free model, where the robust satisficing model also corresponds to the GRC (globalized
robust counterpart)-sum model of Ben-Tal et al. (2017) as follows:

min k

s.t. g(x, z) ≤ kp(z − ẑ), ∀z ∈ Z
c>x ≤ τ
x ∈ X , k ∈ R+.

(4.5)

In contrast to the robust formulation in Problem (4.3), where the protection offered
is only against the subset Ur ⊆ Z of all possible realizations of z, the robust satisfic-
ing model allows the uncertainty to range over the entire support Z , but controls the
level of constraint violations as much as possible whenever z deviates from its nominal
value, ẑ. Additionally, as a trade-off for the model’s greater ability to withstand uncer-
tainty, an acceptable loss in optimality is specified by a target that satisfies τ ≥ Z0. As
also observed in Long, Sim, and Zhou (2021), the robust satisficing model is almost in
the same complexity class as its robust optimization counterpart. We also note that if
the constraint function h(x, z) is a saddle function, then the function h(x, z)−kp(z− ẑ)
is also a saddle function on domains {(x, k) ∈ X × R+} and {z ∈ Z}, which, as illus-
trated in Example 11, can be transformed to a robust constraint in which the constraint
function can be represented as a g function of Problem (4.2).

Depending on the nominal problem, there are different variants of the robust op-
timization and satisficing models. If the nominal problem has g appearing in the ob-
jective function, then we can introduce artificial variables so that it can be framed as
Problem (4.1). For instance

Z0 = min c>x+ g(x, z)
s.t. x ∈ X ⇐⇒

Z0 = min x0

s.t. ḡ((x0,x), z) ≤ 0
x ∈ X , x0 ∈ R

(4.6)
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where ḡ((x0,x), z) = miny∈R{g(x, z) + y | y ≥ c>x − x0}. Hence, the corresponding
robust optimization problem becomes

Zr = min x0

s.t. ḡ((x0,x), z) ≤ 0 ∀z ∈ Ur
x ∈ X , x0 ∈ R

⇐⇒
Zr = min c>x+ max

z∈Ur
g(x, z)

s.t. x ∈ X ,

and the robust satisficing problem would be

min k
s.t. ḡ((x0,x), z) ≤ kp(z − ẑ) ∀z ∈ Z

x0 ≤ τ
x ∈ X , x0 ∈ R

⇐⇒
min k
s.t. c>x+ g(x, z) ≤ τ + kp(z − ẑ) ∀z ∈ Z

x ∈ X .
(4.7)

We can also extend these frameworks to consider an arbitrary number of constraints,
say m ∈ N as follows,

Nominal problem Robust optimization Robust satisficing (τ ≥ Z0)

Z0 = min c>x
s.t. gi(x, ẑ) ≤ 0

∀i ∈ [m]
x ∈ X

min c>x
s.t. gi(x, z) ≤ 0

∀z ∈ U(ri), i ∈ [m]
x ∈ X

min w>k
s.t. gi(x, z) ≤ kip(z − ẑ)

∀z ∈ Z, i ∈ [m]
c>x ≤ τ
x ∈ X , k ∈ Rm+ ,

where {ri}i∈[m] is a collection of the non-negative radii of the uncertainty set, and
{wi}i∈[m] is a collection of non-negative weights.

4.3 Tractable reformulations and safe approximations

In this section, we demonstrate how we could solve the robust satisficing of Prob-
lem (4.5) that has infinite number of conic constraints, either exactly when possible,
or safely approximated to a practicably solvable optimization problem under Assump-
tion 1. For a biconvex quadratic function with a quadratic penalty and quadratic uncer-
tainty support, we derive the exact reformulation in the form of a tractable semidefinite
optimization problem. Then, for a more general function with polyhedral support and
penalty, we focus on obtaining a tractable safe approximation using affine dual recourse
adaptation technique. The key challenge is to provide the conditions under which the
exact reformulation and safe approximations would not lead to infeasible problems for
any reasonably chosen target above the optimum objective obtained when the nominal
optimization problem is minimized, i.e., τ > Z0.

4.3.1 Biconvex quadratic constraint with quadratic penalty

This problem is motivated from the classical robust optimization proposed in Ben-Tal
and Nemirovski (1998) involving a quadratic constraint and an ellipsoidal uncertainty



Chapter 4. Robust Conic Satisficing 118

set
Zr = min c>x

s.t. ‖A(x)z + a(x)‖22 + b(x)>z + c(x) ≤ 0 ∀z ∈ Er
x ∈ X ,

(4.8)

where Er =
{
z ∈ Rnz | z>z ≤ r

}
, r ≥ 0, is a non-empty ellipsoidal uncertainty set and

a : Rnx 7→ Rna , A : Rnx 7→ Rna×nz , b : Rnx 7→ Rnz , c : Rnx 7→ R are affine mappings
of the decision variables x. Note that here the nominal value is ẑ = 0, which can be
assumed without any loss of generality. Biconvex robust optimization problems are
typically difficult to deal with; however, as shown below, Problem (4.8) is a notable
exception. Besides, we assume that the nominal problem is strictly feasible.

Theorem 16. (Ben-Tal and Nemirovski, 1998, Theorem 3.2). For any r > 0, the con-
straints

‖A(x)z + a(x)‖22 + b(x)>z + c(x) ≤ 0, ∀z ∈ Er
are equivalent to the following positive semidefinite constraint:

∃λ ≥ 0 :

 Ina a(x) A(x)

a(x)> −c(x)− λr −1
2b(x)>

A(x)> −1
2b(x) λInz

 � 0.

Proof. To avoid clutter, we first drop the dependency of A, b, c on x, and then we ex-
pand the squared Euclidean norm in the robust constraint ‖A(x)z+a(x)‖22 +b(x)>z+
c(x) ≤ 0, ∀z ∈ Er to equivalently express it as[

1
z

]> [ −c− a>a −
(
A>a+ 1

2b
)>

−
(
A>a+ 1

2b
)

−A>A

] [
1
z

]
≥ 0 ∀z :

[
1
z

]> [ r 0>

0 −Inz

] [
1
z

]
≥ 0.

Applying S-lemma leads to another equivalent representation of our quadratic con-
straint which is

∃λ ≥ 0 :

[
−c− a>a −

(
A>a+ 1

2b
)>

−
(
A>a+ 1

2b
)

−A>A

]
− λ

[
r 0>

0 −Inz

]
� 0

⇐⇒ ∃λ ≥ 0 :

[
−c− λr −1

2b
>

−1
2b λInz

]
−

[
a>

A>

]
Ina

[
a>

A>

]>
� 0.

Finally, using Schur’s complement and recovering the dependency ofA, b, c onx yields
the desired result.

Analogously, we now consider a robust quadratic satisficing model by choosing the
penalty function to be the squared Euclidean norm p(z) = ‖z‖22 = z>z. Suppose we
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consider the ellipsoidal support set Z = Er̄, r̄ ≥ r, which contains the earlier uncer-
tainty set Er. The arising robust satisficing problem can then be written down as

min k

s.t. ‖A(x)z + a(x)‖22 + b(x)>z + c(x) ≤ kz>z ∀z ∈ Z,
c>x ≤ τ
x ∈ X , k ∈ R+,

(4.9)

where τ > Z0 is the prescribed target.

Theorem 17. For any r̄ > 0, the constraints

‖A(x)z + a(x)‖22 + b(x)>z + c(x) ≤ kz>z, ∀z ∈ Z

are equivalent to the following positive semidefinite constraint:

∃λ ≥ 0 :

 Ina a(x) A(x)

a(x)> −c(x)− λr̄ −1
2b(x)>

A(x)> −1
2b(x) (k + λ)Inz

 � 0.

Under Assumption 1 and that the nominal problem is strictly feasible, Problem (4.9) is feasible
for any chosen target, τ > Z0.

Proof. By relocating kz>z to the left-hand side, the constraint function is still quadratic
in x and in z. Using similar arguments of the S-lemma and Schur’s complement from
the proof of Theorem 16 thus completes the first half of the theorem.

For the second half of the proof, we denote by xs ∈ X any Slater’s point of the
nominal problem. Let x̂ be the optimum solution to the nominal problem so that Z0 =
c>x̂. Since X is a convex set, it follows that there is a point x̂s ∈ X on the line segment
connecting x̂ and xs such that

c>x̂s ≤ τ and ‖a(x̂s)‖22 + c(x̂s) < 0.

It thus suffices to show that there exists a sufficiently large positive k̂ such that (x, k, λ) =
(x̂s, k̂, 0) is feasible in Problem (4.9). To this end, we first note from the above quadratic
inequality that [

Ina a(x̂s)

a(x̂s)> −c(x̂s)

]
� 0.

Thus, there exists k̂ > 0 such that

k̂

[
Ina a(x̂s)

a(x̂s)> −c(x̂s)

]
�

[
A(x̂s)

−1
2b(x̂

s)>

][
A(x̂s)

−1
2b(x̂

s)>

]>
.

Therefore, by the virtue of Schur’s complement, (x, k, λ) = (x̂s, k̂, 0) satisfies the semidef-
inite constraint presented in the theorem. The proof is now complete.

Theorems 16 and 17 show that both the robust quadratic optimization and satis-
ficing problems can be reformulated as tractable semidefinite optimization problems
that can be solved exactly in polynomial time by, for instance, the interior point algo-
rithm. These results heavily rely on the nature of the problem: g is a biconvex quadratic
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function, the uncertainty set and the support are ellipsoidal, and the penalty function
is quadratic in the form of squared Euclidean norm. For a more general robust conic
satisficing problem of the form of Problem (4.5), exact tractable reformulations may not
exist, and thus approximations would be needed. We consider next the case of polyhe-
dral support sets, and we use polyhedral penalty function to penalize the deviation of
the uncertain parameter z from its nominal value ẑ.

4.3.2 Tractable safe approximation with affine dual recourse adaptation

Assuming again without loss of generality that ẑ = 0, we denote the optimal solution
of the nominal optimization problem (4.1) by x̂ and by ŷ the corresponding optimal
recourse, that is,

ŷ ∈ argmin
y

{
d>y : By �K f(x̂)

}
. (4.10)

As a consequence of our notation, we have Z0 = c>x̂. Problem (4.5) can be expressed
in the following explicit formulation,

min k

s.t. d>y(z) ≤ kp(z) ∀z ∈ Z
By(z) �K f(x) + F (x)z ∀z ∈ Z
c>x ≤ τ
x ∈ X , y ∈ Rnz ,ny , k ∈ R+,

(4.11)

whereRm,n denotes the family of all functions from Rm to Rn, i.e.,

Rm,n = {y | y : Rm 7→ Rn}.

The problem remains intractable even if we restrict the recourse y to a static function
that does not depend on z. As we will reveal, we overcome this challenge by using a
technique of dualizing twice similar to that in Roos et al. (2020), first over the recourse
variables y and then over the uncertain parameters z to absorb the conic nature of the
original problem into a new uncertainty set while the polyhedral support and penalty
show up as linear constraints of the resultant formulation. We can thus use familiar
approximation methods such as affine recourse adaptation for this resulting problem.
Although feasibility is not guaranteed with such approximations even under assump-
tions of complete recourse (see for e.g., Bertsimas, Sim, and Zhang, 2019), our results
however show that whenever the target satisfies τ ≥ Z0, the affine dual recourse adapta-
tion would always yield a feasible solution under the stated assumptions as follows.

Assumption 2. We assume the following:

(i) Solvable: The optimal nominal solutions x̂ and ŷ exist.

(ii) Complete and bounded recourse: For any v ∈ Rnf , there exists a y ∈ Rny such
thatBy �K v. Moreover, there does not exist y ∈ Rny such thatBy � 0 and d>y < 0.
These conditions ensure that Problem (4.2) is always finite and strictly feasible.

(iii) Polyhedral support: The uncertainty set Z is a polytope

Z = {z ∈ Rnz |Hz ≤ h},
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for someH ∈ Rnh×nz and h ∈ Rnh+ .

(iv) Polyhedral penalty: The polyhedral penalty function p(ζ) : Rnz 7→ R+ can be ex-
pressed as

p(ζ) = max
(λ,η)∈V

{λ>ζ − η},

where V is a polyhedral

V = {(λ, η) ∈ Rnz × R+ | ∃µ ∈ Rnµ : Mλ+Nµ+ sη ≤ t},

for some M ∈ Rnm×nz , N ∈ Rnm×nµ , and s, t ∈ Rnm . In addition, (i) V contains the
origin so that p(ζ) ≥ 0 and p(0) = 0, (ii) there exists µ̂ ∈ Rnµ such thatNµ̂ < t, which
ensures p(ζ) > 0 if ζ 6= 0, and (iii) V is bounded, which ensures p(ζ) <∞.

We remark that the term complete recourse is an extension of the same term used
in stochastic linear optimization (see for e.g., Birge and Louveaux, 2011) to our model
where the second stage problem is a conic optimization problem. It ensures that Prob-
lem (4.2) is strictly feasible. To see the strict feasibility, let v ∈ Rnf such that v �K 0, and
under compete recourse, there exists a y ∈ Rny such thatBy �K f(x) +F (x)z+ v �K
f(x) + F (x)z. The bounded recourse condition ensures that the g function of Prob-
lem (4.2) is always finite.

It is common to choose a polyhedral norm as the penalty function, which has a
similar representation.

Proposition 11 (Polyhedral norm). Under Assumption 2, if the penalty function p is a norm,
then it has the representation

p(ζ) = max
λ∈Rnz ,µ∈Rnµ

{
λ>ζ |Mλ+Nµ ≤ t

}
,

for which
{λ |Mλ+Nµ ≤ t} = {λ | −Mλ+Nµ ≤ t} .

Its dual norm is given by

p?(ζ) = min
µ∈Rnµ ,δ∈R+

{δ |Mζ +Nµ ≤ δt} .

Proof. Suppose that p is a norm function and define

J =
⋃

ζ∈Rnz
argmax
(λ,η)∈V

{
λ>ζ − η

}
.

We will first show that (λ?, η?) ∈ J implies η? = 0, that is, η is superfluous in the
optimization problem underlying the definition of p. Suppose otherwise for the sake
of a contradiction that there exists (ζ?,λ?, η?) ∈ Rnz × Rnz × R++ such that (λ?, η?) ∈
argmax(λ,η)∈V

{
λ>ζ? − η

}
. It follows that p(ζ?) = (λ?)>ζ? − η? and, as p is a norm,

p(2ζ?) = 2(λ?)>ζ? − 2η?. Note also that

p(2ζ?) = max
(λ,η)∈V

{
λ>(2ζ?)− η

}
≥ (λ?)>(2ζ?)− η?.

By comparing p(2ζ?) with its lower bound, we find η? ≤ 0, reaching hence a contra-
diction. In conclusion, η always vanish at optimality, and we can assume that s = 0



Chapter 4. Robust Conic Satisficing 122

without any loss of generality:

p(ζ) = max
λ∈Rnz ,µ∈Rnµ

{
λ>ζ |Mλ+Nµ ≤ t

}
.

Since p(ζ) = p(−ζ) for all ζ ∈ Rnz , the polytope Q1 = {λ |Mλ+Nµ ≤ t} must be
identical to the polytope Q2 = {λ | −Mλ+Nµ ≤ t}. Otherwise, suppose λ∗ ∈ Q1

but λ∗ /∈ Q2, then by a separating hyperplane argument there would exist a vector
ζ∗ ∈ Rnz such that

p(ζ∗) = max
λ∈Q1

{λ>ζ∗} ≥ λ∗>ζ∗ > max
λ∈Q2

{λ>ζ∗} = p(−ζ∗),

which is a contradiction. Likewise, similar contradiction can be established if λ∗ ∈ Q2

but λ∗ /∈ Q1. Hence, Q1 = Q2. Next, we derive the dual norm p?:

p?(ζ) = max
ω∈Rnz

{
ω>ζ | p(ω) ≤ 1

}
= max
ω∈Rnz

{
ω>ζ | λ>ω ≤ 1, ∀(λ,µ) : Mλ+Nµ ≤ t

}
= max
ω∈Rnz ,α∈Rnm+

{
ω>ζ | α>t ≤ 1, M>α = ω, N>α = 0

}
= max
α∈Rnm+

{
α>Mζ | α>t ≤ 1, N>α = 0

}
= min
µ∈Rnµ ,δ∈R+

{δ |Mζ +Nµ ≤ δt} ,

where the third maximization problem constitutes a robust counterpart of the second
and the fifth equation holds due to the standard linear optimization duality argument.

Example 12 (Budgeted norm). We illustrate the modeling potential of the norm-based penalty
defined in Proposition 11 with a budgeted norm which computes the sum of the Γ ∈ {1, . . . , nz}
largest absolute components of an nz-dimensional vector, i.e.,

pΓ(ζ) = max
S⊆[nz ],|S|=Γ

∑
i∈S
|ζi|

so that p1(ζ) = ‖ζ‖∞ and pnz(ζ) = ‖ζ‖1. This can be represented as the following linear
optimization problem

pΓ(ζ) = max
λ∈Rnz

λ>ζ
∣∣∣∣∣∣
∑
i∈[nz ]

|λi| ≤ Γ, |λi| ≤ 1, ∀i ∈ [nz]



= max
λ,µ∈Rnz

λ
>ζ

∣∣∣∣∣∣∣∣∣

∑
i∈[nz ]

µi ≤ Γ

λi − µi ≤ 0 ∀i ∈ [nz]
−λi − µi ≤ 0 ∀i ∈ [nz]
µi ≤ 1 ∀i ∈ [nz]

 ,

which satisfies the properties of the polyhedral penalty in Assumption 2.
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We also remark that since second-order conic constraints can be approximated ac-
curately via a modest sized polyhedron (Ben-Tal and Nemirovski, 2001), the represen-
tation of polyhedral penalty is quite broad and can be used to approximate many differ-
ent types of convex nonlinear penalty functions such as, inter alia, convex polynomials
and `p-norms, for p ≥ 1.

Under Assumption 2, we will show that the robust satisficing problem (4.5) with a
conic constraint and a polyhedral uncertainty set admits an equivalent reformulation
as a problem of a similar nature but with linear constraints and a conic uncertainty set.
The following result is a precursor for obtaining the alternate formulation of the robust
satisficing problem, which would enable us to obtain a safe approximation via affine
dual recourse adaptation.

Proposition 12. Under Assumption 2, for any a ∈ Rnz and k ≥ 0, we have

max
z∈Z

{
a>z − kp(z)

}
= min

η∈R+,β∈R
nh
+

{
β>h+ η | (a−H>β, η, k) ∈ V̄

}
where V̄ is the perspective cone of V given by

V̄ = {(λ, η, k) ∈ Rnz × R2
+ | ∃µ ∈ Rnµ : Mλ+Nµ+ sη ≤ tk}.

If the penalty function p is a norm, then we have

max
z∈Z

{
a>z − kp(z)

}
= min
β∈Rnh+

{
β>h | p?(a−H>β) ≤ k

}
.

Proof. We first consider k > 0. From the definition of p in Assumption 2, we find

max
z∈Z

{
a>z − kp(z)

}
= max

z∈Z
min

(λ,η)∈V

{
(a− kλ)>z + kη

}
. (4.12)

Since this is linear optimization problem, by the standard linear optimization duality
argument, this latter maximization problem can be expressed as

max
z∈Z

min
(λ,η)∈V

{
(a− kλ)>z + kη

}
= min

(λ,η)∈V
max
z∈Z

{
(a− kλ)>z + kη

}
= min

(λ,η)∈V,β

{
β>h+ kη | β ≥ 0, H>β = a− kλ

}
= min
β≥0,η≥0

{
β>h+ kη | (a−H>β, kη, k) ∈ V̄

}
= min
β≥0,η≥0

{
β>h+ η | (a−H>β, η, k) ∈ V̄

}
,

where the first interchange between minimization and maximization is justified be-
cause Z is compact, and this concludes the desired equivalence. Next, we consider the
case when k = 0. Since V is bounded, we must have {(λ, η) | (λ, η, 0) ∈ V̄} = {(0, 0)}.
Hence, (a − H>β, η, 0) ∈ V̄ is equivalent to η = 0 and H>β = a. By noting that
maxz∈Z a

>z = minβ∈Rnh+
{β>h |H>β = a}, the first half of the proposition follows.
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If the penalty function p is a norm, from the derivation of the dual norm in Propo-
sition 11, we have

min
β∈Rnh+

{
β>h | p?(a−H>β) ≤ k

}
= min
β∈Rnh+ ,µ∈Rnµ ,δ∈R+

{
β>h | δ ≤ k, M(a−H>β) +Nµ ≤ δt

}
= min
β∈Rnh+ ,µ∈Rnµ

{
β>h |M(a−H>β) +Nµ ≤ kt

}
,

where the second equality follows because, to ensure that (0, 0) ∈ V , t must be non-
negative making the constraint δ ≤ k binding at optimality. Noting from the previous
half of this proposition and the proof of Proposition 11 that, as s vanishes when the
penalty function is a norm, the latter minimization problem is equivalent to
maxz∈Z

{
a>z − kp(z)

}
completes the proof.

Theorem 18. Under Assumption 2, for any x ∈ Rnx and k ≥ 0, the robust satisficing con-
straint

g(x, z) ≤ kp(z), ∀z ∈ Z

is equivalent to

∀ρ ∈ P, ∃β ∈ Rnh ,µ ∈ Rnµ , η ∈ R :


ρ>f(x) + β>h+ η ≤ 0
M(F (x)>ρ−H>β) +Nµ+ sη ≤ tk
β ≥ 0, η ≥ 0,

where P =
{
ρ ∈ K? | B>ρ = d

}
.

Proof. First, it follows from the specificity of g in (4.2) that

g(x, z) ≤ kp(z), ∀z ∈ Z ⇐⇒ max
z∈Z

min
y

{
d>y − kp(z) | By �K f(x) + F (x)z

}
≤ 0.

Under complete and bounded recourse, observe that the inner minimization (over y) is
strictly feasible and its objective is finite. Thus, we can transform it into a maximization
problem via conic duality, that is,

g(x, z) ≤ kp(z), ∀z ∈ Z ⇐⇒ max
z∈Z

max
ρ∈P

{
ρ> (f(x) + F (x)z)− kp(z)

}
≤ 0

⇐⇒ max
ρ∈P

{
ρ>f(x) + max

z∈Z

{
ρ>F (x)z − kp(z)

}}
≤ 0.

Invoking Proposition 12 to transform the inner maximization (over z) to a minimiza-
tion problem (over β, µ and η) completes the proof.
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Theorem 18 allows us to reformulate Problem (4.5), which is the same as Prob-
lem (4.11), as a classical adaptive robust linear optimization model with a conic uncer-
tainty set as follows,

min k

s.t. ρ>f(x) + β(ρ)>h+ η(ρ) ≤ 0 ∀ρ ∈ P
M(F (x)>ρ−H>β(ρ)) +Nµ(ρ) + sη(ρ) ≤ tk ∀ρ ∈ P
β(ρ) ≥ 0, η(ρ) ≥ 0 ∀ρ ∈ P
c>x ≤ τ
x ∈ X , k ∈ R+, β ∈ Rnf ,nh ,µ ∈ Rnf ,nµ , η ∈ Rnf ,1,

(4.13)

where (β,µ, η) replaces y as the recourse variables and P represents the (dual) uncer-
tainty set defined in Theorem 18. To distinguish the two different recourse variables,
we may refer y as the primal recourse and (β,µ, η) as the dual recourse. Comparing
Problems (4.11) and (4.13), we find that, even though Problem (4.11) is always feasi-
ble (thanks to Assumption 2), it is not necessarily easy to construct a feasible solution,
let alone computing the optimal solution. In contrast, we will argue below that Prob-
lem (4.13) admits an almost trivial feasible dual recourse solution. The existence of this
feasible solution will then be used to support the appropriateness of approximately
solving Problem (4.13) using affine dual recourse adaption as follows:

min k

s.t. ρ>f(x) + β(ρ)>h+ η(ρ) ≤ 0 ∀ρ ∈ P
M(F (x)>ρ−H>β(ρ)) +Nµ(ρ) + sη(ρ) ≤ tk ∀ρ ∈ P
β(ρ) ≥ 0, η(ρ) ≥ 0 ∀ρ ∈ P
c>x ≤ τ
x ∈ X , k ∈ R+, β ∈ Lnf ,nh ,µ ∈ Lnf ,nµ , η ∈ Lnf ,1,

(4.14)

where Lm,n denotes the sub-class of functions in Rm,n that are affinely dependent on
the inputs as follows:

Lm,n =
{
y ∈ Rm,n

∣∣ ∃π ∈ Rn,Π ∈ Rn×m : y(z) = π + Πz
}
.

Theorem 19. Under Assumption 2, there exists a feasible solution for Problem (4.14) whenever
the target satisfies τ ≥ Z0. Moreover, Problem (4.14) is practicably solvable under Assump-
tion 1.

Proof. We first show that the solution x = x̂, β(ρ) = 0, and η(ρ) = 0 robustly satisfies
the first and third constraints of Problem (4.14). To achieve this, it suffices to derive the
maximum value that the left-hand side of the first constraint could take, i.e.,

max
ρ∈P

ρ>f(x̂) = min
y

{
d>y | By �K f(x̂)

}
= d>ŷ = g(x̂,0) ≤ 0,

where the first equality is due to the strong duality (as the minimization problem is
strictly feasible) and the second equality holds because of the optimality of the recourse
variable ŷ given the decision x̂ in (4.10).
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We next show that the remaining constraints can be satisfied because there exists
k̂ > 0 such that

MF (x̂)>ρ+Nµ̂k̂ ≤ tk̂ ∀ρ ∈ P. (4.15)

Indeed, since Nµ̂ < t, it implies that the set {λ | Mλ + Nµ̂ ≤ t} must contain the
origin in its interior. Hence, there exists a norm ‖ · ‖ such that

{λ | ‖λ‖ ≤ 1} ⊆ {λ |Mλ+Nµ̂ ≤ t}.

Therefore, it suffices to show that there exists a finite k̂ > 0 such that

max
ρ∈P
‖F (x̂)>ρ‖ ≤ k̂.

Suppose that the dual uncertainty set P is unbounded for the sake of a contradiction.
Then, there exists a vector v ∈ Rnf such that maxρ∈P ρ>v is unbounded, and there-
fore its corresponding dual miny

{
d>y | By �K v

}
must be infeasible, which contra-

dicts Assumption 2. Hence, P is a bounded set, and a finite and positive k̂ exists.
Hence, the solution x = x̂, β(ρ) = 0, µ(ρ) = µ̂k̂, k = k̂ and η(ρ) = 0 robustly satisfies
the second constraint of Problem (4.14).

To show that Problem (4.14) can be expressed as a modest sized conic optimization
problem, observe that since the recourse variables are restricted to affine functions, we
can express Problem (4.14) more compactly as

min k

s.t. γ(x, k,L) + Γ(x, k,L)ρ ≤ 0 ∀ρ ∈ P
x ∈ X , k ∈ R+, L ∈ R(nh+nµ+1)×(nf+1),

where L gathers the affine dual recourse adaption coefficients of (β,µ, η) and γ,Γ are
appropriate affine mappings. We next show that under Assumption 2, for any γ ∈ Rnγ
and Γ ∈ Rnγ×nf , the robust counterpart of γ+Γρ ≤ 0, ∀ρ ∈ P is given by the following
linear conic constraint

∃V ∈ Rnγ×ny :

{
γ + V d ≤ 0
B(Vi)

> �K Γ>i ∀i ∈ [nγ ].

Indeed, observe that the given robust constraint can be written down as

max
ρ∈P

γi + Γiρ ≤ 0 ∀i ∈ [nγ ] ⇐⇒ min
vi∈Rny

{
γi + d>vi | Bvi �K Γ>i

}
≤ 0 ∀i ∈ [nγ ],

where the equivalence holds because the minimization problem is convex and strictly
feasible. We then denote

[
v1, . . . ,vnγ

]> by V . Hence, the problem is practicably solv-
able under Assumption 1, which completes the proof.

This result is computationally significant since, despite the difficulty to solve it ex-
actly, if τ ≥ Z0, we can still obtain a feasible solution of Problem (4.14) by solving a
modest sized conic optimization problem.
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4.4 Two-stage adaptive optimization

In this section, we explore how the affine dual recourse adaptation can be used to pro-
vide safe approximations to two-stage adaptive optimization problems. We investigate
a two-stage adaptive linear optimization problem under complete recourse focusing
on the `1-norm penalty function, p(ζ) = ‖ζ‖1, which has been previously tackled by
Long, Sim, and Zhou (2021) in the data-driven setting. For simplicity, we first focus
on the stochastic-free setting with the nominal value being ẑ = 0. With K = Rnf+ , the
two-stage nominal problem can be written as:

Z0 = min c>x+ d>y

s.t. By ≥ f(x)

x ∈ X , y ∈ Rny ,
(4.16)

which has the same format as Problem (4.6). We analogously denote by (x̂, ŷ) an op-
timal nominal solution. Assuming further that ẑ = 0, the robust satisficing model,
which is based on Problem (4.7), becomes the following standard two-stage robust
linear program with (x, k) being the first-stage decisions and y being the recourse or
second-stage decisions:

min k

s.t. c>x+ d>y(z) ≤ τ + k‖z‖1 ∀z ∈ Z
By(z) ≥ f(x) + F (x)z ∀z ∈ Z
x ∈ X , y ∈ Rnz ,ny , k ∈ R+.

(4.17)

Generally, two-stage robust linear programs are not tractable and are typically solved
approximately via affine primal recourse adaptation, that is,

min k

s.t. c>x+ d>y(z) ≤ τ + k‖z‖1 ∀z ∈ Z
By(z) ≥ f(x) + F (x)z ∀z ∈ Z
x ∈ X , y ∈ Lnz ,ny , k ∈ R+.

(4.18)

Note that, while Problem (4.17) is always feasible under Assumption 2, it is not neces-
sarily the case for the restricted problem (4.18) (Long, Sim, and Zhou, 2021). As a result,
we consider a more flexible, non-affine primal recourse adaptation extension with extra
coefficients q† ∈ Rny :

y(z) = q +Qz + q†‖z‖1. (4.19)

Observe that when such a non-linear primal recourse adaptation is substituted for y(z)
in Problem (4.17), the resultant optimization problem can be written down as

min k

s.t. c>x+ d>(q +Qz + q†‖z‖1) ≤ τ + k‖z‖1 ∀z ∈ Z
B(q +Qz + q†‖z‖1) ≥ f(x) + F (x)z ∀z ∈ Z
k − d>q† ≥ 0, Bq† ≥ 0

x ∈ X , q ∈ Rny , Q ∈ Rny×nz , q† ∈ Rny , k ∈ R+,

(4.20)
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where the two linear constraints k − d>q† ≥ 0 and Bq† ≥ 0 are added to ensure that
the two robust constraints are concave in the uncertain z and consequently tractability
of Problem (4.20). Observe that with q† = 0, Problem (4.20) is equivalent to Prob-
lem (4.18), implying that the former problem is a less conservative approximation.

Theorem 20. (Long, Sim, and Zhou, 2021). Under complete recourse, there is always a
feasible solution to Problem (4.20) whenever the target satisfies τ ≥ Z0.

Proof. Consider the following solution to Problem (4.20): x = x̂, q = ŷ, Q = 0 and
k = d>q̂† where q̂† ∈ Rny satisfiesBq̂† ≥ 0 andBq̂† ≥ maxi∈[nf ],j∈[nz ] |Fij(x̂)| ·1. Note
that q̂† always exists because of complete recourse. The suggested solution robustly
satisfies first constraint of Problem (4.20) because

c>x̂+ d>
(
ŷ + q†‖z‖1

)
= c>x̂+ d>ŷ + k‖z‖1 = Z0 + k‖z‖1 ≤ τ + k‖z‖1.

Moreover, the second constraint is also robustly satisfied as

B(ŷ + q†‖z‖1) ≥ f(x̂) +Bq†‖z‖1

≥ f(x̂) + ‖z‖1
{

max
i∈[nf ],j∈[nz ]

|Fij(x̂)|
}
· 1 ≥ f(x̂) + F (x̂)z, ∀z ∈ Z

where the first two inequalities follow from the feasibility of (x̂, ŷ) in the nominal prob-
lem (4.16) and the construction of q†, respectively. Consequently, it readily follows that
the constructed solution is feasible in Problem (4.20).

Next, we derive the robust counterpart of Problem (4.20).

Proposition 13. Problem (4.20) is equivalent to

min k

s.t. c>x+ d>q + h>w0 ≤ τ
− (k − d>q†)1 ≤H>w0 −Q>d ≤ (k − d>q†)1
fi(x) + h>wi ≤ Biq

† ∀i ∈ [nf ]

−Biq
†1 ≤H>wi − F>i (x) +Q>B>i ≤ Biq

†1 ∀i ∈ [nf ]

x ∈ X , q ∈ Rny , Q ∈ Rny×nz , q† ∈ Rny ,w0, . . . ,wnf ∈ Rnh+ , k ∈ R+.
(4.21)

Proof. The first robust constraint of Problem (4.20) can be expressed as

max
z

{
d>Qz − (k − d>q†)‖z‖1 | Hz ≤ h

}
≤ τ − d>q − c>x.

By Proposition 12, we can replace the maximization problem on the left-hand side of
by a minimization problem:

min
w0

{
h>w0 | ‖H>w0 −Q>d‖∞ ≤ k − d>q†, w0 ≥ 0

}
.

Similarly, the second robust constraint of problem (4.20) can be written down as

max
z

{
(Fi(x)−BiQ)z −Biq

†‖z‖1 : Hz ≤ h
}
≤ Biq − fi(x) ∀i ∈ [nf ],
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whose left-hand side maximization problem can be replaced by

min
wi

{
h>wi : ‖H>wi − F>i (x) +Q>B>i ‖∞ ≤ Biq

†, wi ≥ 0
}

∀i ∈ [nf ],

Finally, the two deterministic linear constraints (namely, k − d>q† ≥ 0 and Bq† ≥ 0)
of (4.20) are redundant in view of problem (4.21) and can therefore be safely omitted.
The proof is thus completed.

Next, we will similarly analyze the dual robust satisficing problem (4.13) when
p(ζ) = ‖ζ‖1 and K = Rnf+ . From Proposition 12, with p?(ζ) = ‖ζ‖∞, Problem (4.13)
reduces to

min k

s.t. c>x+ ρ>f(x) + β(ρ)>h ≤ τ ∀ρ ∈ P
− k1 ≤H>β(ρ)− F (x)>ρ ≤ k1 ∀ρ ∈ P
β(ρ) ≥ 0 ∀ρ ∈ P
x ∈ X , k ∈ R+, β ∈ Rnf ,nh ,

(4.22)

where the dual uncertainty set P is
{
ρ ∈ Rnf+ | B>ρ = d

}
. We note that Problem (4.22)

and the primal robust satisficing model (4.17) are equivalent. However, unlike Prob-
lem (4.17) which may not admit a feasible affine primal recourse y, Problem (4.22)
always admits a feasible affine dual recourse for β. Hence, for this problem, we are not
required to come up with an ingenious idea of how to construct a non-affine recourse
adaptation that can ensure feasibility. Our objective here is therefore to show that,
despite being simpler, the affine dual recourse adaptation of Problem (4.22) is closer
to the original Problem (4.17) compared to the previously discussed non-affine primal
recourse adaptation of Problem (4.17) itself.

To begin with, we write down the affine recourse approximation of Problem (4.22)
as

min k

s.t. c>x+ ρ>f(x) + (π + Πρ)>h ≤ τ ∀ρ ∈ P
− k1 ≤H>(π + Πρ)− F (x)>ρ ≤ k1 ∀ρ ∈ P
π + Πρ ≥ 0 ∀ρ ∈ P
x ∈ X , π ∈ Rnh , Π ∈ Rnh×nf , k ∈ R+

(4.23)

where the dual recourse β is restricted to an affine function π + Πρ of ρ.

Theorem 21. Under complete recourse, the affine dual recourse adaptation in Problem (4.23)
is a lower bound of Problem (4.20).

Proof. First of all, we compare the variants of Problems (4.20) and (4.23) when x is fixed
to x′. We can then abbreviate f(x′) and F (x′) to f ′ and F ′, respectively. Besides, we
let τ ′ denote the value of τ − c>x′. It suffices to show that the optimal objective value
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of
min k

s.t. ρ>f ′ + (π + Πρ)>h ≤ τ ′ ∀ρ ∈ P
− k1 ≤H>(π + Πρ)− (F ′)>ρ ≤ k1 ∀ρ ∈ P
π + Πρ ≥ 0 ∀ρ ∈ P
π ∈ Rnh , Π ∈ Rnh×nf , k ∈ R+

(4.24)

is smaller than or equal to that of

min k

s.t. d>(q +Qz + q†‖z‖1) ≤ k‖z‖1 + τ ′ ∀z ∈ Z
B(q +Qz + q†‖z‖1) ≥ f ′ + F ′z ∀z ∈ Z
k − d>q† ≥ 0, Bq† ≥ 0

q ∈ Rny , Q ∈ Rny×nz , q† ∈ Rny , k ∈ R+.

(4.25)

If τ ′ < minq{d>q | Bq ≥ f ′} = maxρ∈P{ρ>f ′}, then Problems (4.24) and (4.25) are
infeasible because their first respective robust constraints cannot be satisfied (recall that
0 ∈ Z and h ≥ 0). Otherwise if τ ′ ≥ minq{d>q : Bq ≥ f ′}, they must be feasible
thanks to Theorems 19 and 20, which hold when X = {x′}. Henceforth, we assume
that τ ′ is sufficiently large to avoid trivialities.

It suffices to show that, for any (q,Q, q†, k) feasible in Problem (4.25), we can con-
struct π and Π such that (π,Π, k) is feasible in Problem (4.24). To achieve this, we
specifically consider π = w0 ∈ Rnh+ and Π =

[
w1, . . . ,wnf

]
∈ Rnh×nf+ , where {wi}nfi=0

satisfy the following conditions.

d>q + h>w0 ≤ τ ′ (4.26a)
−(k − d>q†)1 ≤H>w0 −Q>d ≤ (k − d>q†)1 (4.26b)

f ′i + h>wi ≤ Biq ∀i ∈ [nf ] (4.26c)
−Biq

†1 ≤H>wi − (F ′)>i +Q>B>i ≤ Biq
†1 ∀i ∈ [nf ] (4.26d)

Note that the existence {wi}nhi=0 is guaranteed by Proposition 13 and Theorem 20.
We will now show that this choice of (π,Π, k) satisfies all constraints in Prob-

lem (4.24). By a usual duality argument, the first robust constraint of this problem
is satisfied if and only if there exists a vector ν ∈ Rny such that

π>h+ ν>d ≤ τ ′ and Bν ≥ f ′ + Π>h.

Thanks to the inequalities (4.26a) and (4.26c), ν can be simply chosen as q.
Similarly, the next two constraints of Problem (4.24), namely−k1 ≤H>(π+Πρ)−

(F ′)>ρ ≤ k1, are robustly satisfied for all ρ ∈ P if and only if there exist matrices
Φ,Ψ ∈ Rny×nz such that

H>π + Φ>d ≤ k1
BΦ ≥ Π>H − F ′

}
and

{
−H>π + Ψ>d ≤ k1
BΨ ≥ F ′ −Π>H.
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In this case, we can choose, Φ = q†1> −Q and Ψ = q†1>nz +Q. Observe that

H>π + Φ>d = H>w0 + 1(q†)>d−Q>d ≤ k1

BΦ−Π>H + F ′ =
[
Biq

†1> −BiQ− (wi)>H + F ′i

]nf
i=1
≥ 0,

where the inequalities holds due to the inequalities (4.26b) and (4.26d), as desired. Sim-
ilarly,

−H>π + Ψ>d = −H>w0 + 1(q†)>d+Q>d ≤ k1

BΨ + Π>H − F ′ =
[
Biq

†1> +BiQ+ (wi)>H − F ′i
]nf
i=1
≥ 0.

Finally, the third constraint of (4.24) is trivially satisfied because of the non-negativity of
π, Π and ρ. Hence, Problem (4.24) is a lower bound of Problem (4.25), and the theorem
follows.

4.4.1 Data-driven adaptive conic optimization

We can generalize our earlier results to the data-driven scheme of Long, Sim, and Zhou
(2021) where the data comprises Ω samples, and ẑω, ω ∈ [Ω], denotes each known real-
ization of z. Consistent with the classical data-driven stochastic optimization problem
framework, we consider the nominal problem of the form that minimizes the total first
stage and the average second stage costs over the Ω realizations as follows:

Z0 = min c>x+
1

Ω

∑
ω∈[Ω]

d>yω

s.t. Byω �K f(x) + F (x)ẑω ∀ω ∈ [Ω]

x ∈ X , y1, . . . ,yΩ ∈ Rny .

(4.27)

We assume that an optimal solution of Problem (4.27) exists, and we denote it by
x̂, ŷ1, . . . , ŷΩ. Thus, Z0 = c>x̂+ 1

Ω

∑
ω∈[Ω] d

>ŷω.
For consistency with the previous adaptive optimization framework in which the

nominal uncertainty value is at the origin, for each ω ∈ [Ω], we define the shifted sup-
port set

Zω = {ζ ∈ Rnz |Hζ ≤ hω}

where hω = h−Hẑω, and the function gω : X × Zω 7→ R,

gω(x, z) = min d>y

s.t. By �K fω(x) + F (x)z

y ∈ Rny ,
(4.28)

where fω(x) = f(x) + F (x)ẑω. We also define the joint shifted support set as

Z̄ = Z1 × · · · × ZΩ,

and the function ḡ : X × Z̄ ,

ḡ(x, (z1, . . . ,zΩ)) =
1

Ω

∑
ω∈[Ω]

gω(x, zω)
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so that
Z0 = min c>x+ ḡ(x, (0, . . . ,0))

s.t. x ∈ X .
(4.29)

We provide a different perspective from Long, Sim, and Zhou (2021) to derive the ro-
bust satisficing model without the need of introducing an ambiguity set of uncertain
probability distributions. In the data-driven setting, the penalty function, p̄ : Rnz×Ω 7→
R is also defined over the sample averages as follows

p̄(ζ1, . . . , ζΩ) =
1

Ω

∑
ω∈[Ω]

p(ζω).

Hence, for a chosen target that satisfies τ ≥ Z0, the robust satisficing model along
the lines of Problem (4.5) can be expressed as

min k

s.t. c>x+ ḡ(x, (z1, . . . ,zΩ)) ≤ τ + kp̄(z1, . . . ,zΩ), ∀(z1, . . . ,zΩ) ∈ Z̄
x ∈ X , k ∈ R+,

(4.30)

or equivalently

min k

s.t. c>x+
1

Ω

∑
ω∈[Ω]

(gω(x, zω)− kp(zω)) ≤ τ ∀(z1, . . . ,zΩ) ∈ Z̄

x ∈ X , k ∈ R+,

(4.31)

which recovers the data-driven robust satisficing model of Long, Sim, and Zhou (2021).
Our result is however more general than that in Long, Sim, and Zhou (2021) since it
covers polyhedral penalty functions beyond `1-norm, and accommodates second-stage
conic optimization problems beyond linear optimization.

Theorem 22. Under Assumption 2, the approximation of Problem (4.31) via affine dual re-
course adaptation is given as:

min k

s.t. c>x+
1

Ω

∑
ω∈[Ω]

υω ≤ τ

ρ>fω(x) + (hω)> βω(ρ) + ηω(ρ) ≤ υω ∀ρ ∈ P, ω ∈ [Ω]

M
(
F (x)>ρ−H>βω(ρ)

)
+Nµω(ρ) + sηω(ρ) ≤ tk ∀ρ ∈ P, ω ∈ [Ω]

βω(ρ) ≥ 0, ηω(ρ) ≥ 0 ∀ρ ∈ P, ω ∈ [Ω]

x ∈ X , k ∈ R+, υ ∈ RΩ, β1, . . . ,βΩ ∈ Lnf ,nh , µ1, . . . ,µΩ ∈ Lnf ,nµ , η1, . . . , ηΩ ∈ Lnf ,1
(4.32)

where P =
{
ρ ∈ K? | B>ρ = d

}
. Additionally, the problem is feasible whenever the target

satisfies τ ≥ Z0 and is practicably solvable under Assumption 1.



Chapter 4. Robust Conic Satisficing 133

Proof. First, it follows from the specificity of gω in Problem (4.28) that the robust con-
straint in Problem (4.31) is equivalent to

c>x+
1

Ω

∑
ω∈[Ω]

(
max
z∈Zω

min
y

{
d>y − kp(z) : By �K fω(x) + F (x)z

})
≤ τ.

Observe that, for each ω ∈ [Ω], the inner minimization (over y) is strictly feasible and
thus we can transform it into a maximization problem via conic duality, that is,

c>x+
1

Ω

∑
ω∈[Ω]

(
max
ρ∈P

{
ρ>fω(x) + max

z∈Zω

{
(ρ>F (x)z − kp(z)

}})
≤ τ.

Next, similarly to the proof of Theorem 18, we will make use of Proposition 12 to trans-
form the inner maximization (over zω for each ω ∈ [Ω]) to a minimization problem
(over the variables βω, µω and ηω for each ω ∈ [Ω]). As a result, we can express Prob-
lem (4.31) as

min k

s.t. c>x+
1

Ω

∑
ω∈[Ω]

υω ≤ τ

ρ>fω(x) + (hω)> βω(ρ) + ηω(ρ) ≤ υω ∀ρ ∈ P, ω ∈ [Ω]

M
(
F (x)>ρ−H>βω(ρ)

)
+Nµω(ρ) + sηω(ρ) ≤ tk ∀ρ ∈ P, ω ∈ [Ω]

βω(ρ) ≥ 0, ηω(ρ) ≥ 0 ∀ρ ∈ P, ω ∈ [Ω]

x ∈ X , k ∈ R+, υ ∈ RΩ, β1, . . . ,βΩ ∈ Rnf ,nh , µ1, . . . ,µΩ ∈ Rnf ,nµ , η1, . . . , ηΩ ∈ Rnf ,1.

Approximating all recourse variables using affine adaptation results in Problem (4.32),
which completes the first half of the proof.

Assume now that τ ≥ Z0 and consider the solution x = x̂, βω(ρ) = 0, ηω(ρ) = 0
and vω = maxρ∈P

{
ρ>(fω(x̂))

}
(with µω and k to be chosen later), for all ω ∈ [Ω],

which robustly satisfies the first constraint of Problem (4.32) since the left-hand side of
this constraint evaluates to:

c>x̂+
1

Ω

∑
ω∈[Ω]

max
ρ∈P

{
ρ> (fω(x̂))

}
= c>x̂+

1

Ω

∑
ω∈[Ω]

max
ρ∈P

{
ρ> (f(x̂) + F (x̂)ẑω)

}
= c>x̂+

1

Ω

∑
ω∈[Ω]

min
y

{
d>y : By �K f(x̂) + F (x̂)ẑω

}
= c>x̂+

1

Ω

∑
ω∈[Ω]

d>ŷω ≤ τ,

where the last equality follows from the optimality of (x̂, ŷ1, . . . , ŷΩ) in Problem (4.27).
Besides, the proof of Theorem 19 reveals that there exists µ̂ and k̂ > 0 such that the
constraint (4.15) holds. Hence, by completing the suggested solution with µω(ρ) = µ̂k̂,
for all ω ∈ [Ω], and k = k̂, the remaining constraints of Problem (4.32) are satisfied and
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the feasibility argument is completed.

We now consider a special, but an important case where each function gω, ω ∈ [Ω]
evaluates the maximum of nf biaffine functions and can be expressed as

gω(x, z) = min y

s.t. 1y ≥ fω(x) + F (x)z

y ∈ R.
(4.33)

Theorem 23. Suppose each function gω, ω ∈ [Ω] is represented as Problem (4.33), then Prob-
lems (4.31) and (4.32) are equivalent.

Proof. Observe that the dual uncertainty set is now a simplex, P = {ρ ∈ Rnf+ | 1>ρ =
1}. It has been shown (see for e.g., Zhen, Den Hertog, and Sim, 2018) that if the uncer-
tainty set is a simplex, then the approximation via affine recourse adaption is exact.

4.5 Applications and computational studies

In this section, we illustrate the improved performance of the robust satisficing model
over the classical robust model with an example for each of the three variants of the
problems considered in Sections 4.3 and 4.4, i.e., the quadratic problem with exact re-
formulation, and the biconvex as well as two-stage linear optimization problems with
affine dual adaptation. Our results in Sections 4.5.1 and 4.5.2 were obtained using
Mosek 9.2.38 together with YALMIP modeling language (Löfberg, 2004) and MATLAB
R2020a, whereas the results in Section 4.5.3 were obtained using Gurobi 9.1.1 with
RSOME (Robust Stochastic Optimization Made Easy) modeling language (Chen, Sim,
and Xiong, 2020) and Python 3.7.7. All experiments were conducted on an Intel Core
i7 2.7GHz MacBook with 16GB of RAM.

4.5.1 Growth-optimal portfolios

When the constraint is quadratic and the uncertainty set is ellipsoidal, we demonstrate
with a growth-optimal portfolio example that the exact semidefinite reformulation of
the robust satisficing model numerically performs better than that of the robust model.
Consider an investor who aims to accumulate wealth from trading asset by maximiz-
ing a logarithmic utility function. We let xi, i ∈ [n], denote the proportion of capital
allocated to the ith asset, and we impose the budget constraint 1>x = 1 and the non-
negativity constraint x ≥ 0 to disallow short-selling. We henceforth denote by X our
(simplex) feasible set of portfolios and write down the utility maximization problem as

max EP

[
log(1 + x>r̃)

]
s.t. x ∈ X ,

where r̃ ∼ P denotes a random vector of asset returns. Assuming that the asset returns
are serially independent and identically distributed, the logarithmic utility function is
of a particular interest to long-term investors because, if EP

[
log(1 + x>r̃)

]
> 0, then

(with probability one) x underlies a fixed-mix strategy that achieves infinite wealth in
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the long run. On the other hand, if the expected utility is strictly negative, then the
same fixed-mix strategy will eventually lead investors to ruin.

Any optimal solution of the above optimization problem is known as the growth-
optimal portfolio. Following Rujeerapaiboon, Kuhn, and Wiesemann (2016), we ap-
proximate the logarithmic function using a second-order Taylor expansion around one,
resulting in

max x>µ− 1

2
x>(Σ + µµ>)x

s.t. x ∈ X ,
(4.34)

where µ ∈ Rn and Σ ∈ Sn+ denote the mean vector and the covariance matrix of the
asset return distribution P, respectively. As portfolio optimization problems are very
sensitive to the estimation errors in µ, we may robustify Problem (4.34) by seeking a
portfolio x that is robustly optimal in

min max
z∈Er

h(x, z)

s.t. x ∈ X ,
(4.35)

where z ∈ Rn represents an uncertain vector belonging to the ellipsoidal uncertainty
set Er, r ≥ 0, which perturbs µ and h(x, z) = 1

2x
>(Σ + (µ+z)(µ+z)>)x−x>(µ+z).

The corresponding robust satisficing investment problem can be formulated as

min k

s.t. h(x, z) ≤ τ + kz>z ∀z ∈ Rn

x ∈ X , k ∈ R+.

(4.36)

To facilitate the comparisons between (4.35) and (4.36), we derive their respective ro-
bust counterparts in the following propositions.

Proposition 14. For any r > 0, Problem (4.35) is equivalent to

min
1

2
x>Σx+

x0

2

s.t.

 λIn x x

x> x0 + 2x>µ− λr x>µ

x> x>µ 1

 � 0

x ∈ X , x0 ∈ R, λ ∈ R+.

Proof. By introducing an epigraph variable x0 ∈ R to denote the uncertain part of the
objective function of Problem (4.35), we obtain the following equivalent reformulation

min
1

2
x>Σx+

x0

2

s.t. x0 ≥ x>(µ+ z)(µ+ z)>x− 2x>(µ+ z) ∀z ∈ E(r)

x ∈ X , x0 ∈ R.

Next, we rewrite the arising robust constraint in an explicit quadratic form
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[
z
1

]> [ −xx> x− xµ>x
x> − x>µx> x0 + 2x>µ− x>µµ>x

] [
z
1

]
≥ 0 ∀z :

[
z
1

]> [ −In 0
0 r

] [
z
1

]
≥ 0

⇐⇒

[
λIn x

x> x0 + 2x>µ− λr

]
�

[
x

x>µ

][
x

x>µ

]>
,

where the equivalence is due to S-lemma, which holds whenever r > 0. Finally, in-
voking the Schur’s complement to linearize the above positive semidefinite constraint
gives the desired equivalence.

Proposition 15. Problem (4.36) is equivalent to

min k

s.t.

 2kIn x x

x> x0 + 2x>µ x>µ

x> x>µ 1

 � 0

1
2x
>Σx+ x0

2 ≤ τ

x ∈ X , x0 ∈ R, k ∈ R+.

(4.37)

Proof. The proof widely parallels that of Proposition 14 and is therefore omitted.

Furthermore, it can be shown that the equally weighted portfolio x = 1
n1 is in-

creasingly close to being optimal in (4.37) as the target τ increases (i.e., as the investor
becomes increasingly risk-averse). A similar observation in a data-driven setting can be
found in Mohajerin Esfahani and Kuhn (2018) and Long, Sim, and Zhou (2021), among
others. We refer to DeMiguel, Garlappi, and Uppal (2007) for the thorough statistical
comparison between the equally weighted portfolio and other investment strategies.

Theorem 24. Denoting by k?(τ) the optimal objective value of Problem (4.37) for a given
target τ and by k̄?(τ) the optimal objective value of the same problem restricted with x = 1

n1,
we have that limτ↑∞ k̄

?(τ)− k?(τ) = 0.

Proof. Observe that the positive semidefinite constraint of (4.37) implies that[
2kIn x

x> 1

]
� 0 ⇐⇒ 2kIn � xx> =⇒ 2k1>In1 ≥ (1>x)2 = 1, (4.38)

where the equality follows because x ∈ X . Therefore, any feasible k must satisfy k ≥
1

2n .
Next, for any δ > 0, we introduce a matrix Ξ(δ) ∈ Sn+1 and a scalar ξ(δ):

Ξ(δ) =

[
(1 + δ)In 1

1> n

]
and ξ(δ) = sup

v


(
v>

[
1

1>µ

])2 (
v>Ξ(δ)v

)−1
| ‖v‖2 = 1

 .
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Observe that for any nonzero vector (w, wn+1) ∈ Rn+1,[
w

wn+1

]>
Ξ(δ)

[
w

wn+1

]
= δw>w + (w + 1wn+1)>(w + 1wn+1) > 0.

Hence, Ξ(δ) is strictly positive definite, and thus ξ(δ) is positive and finite because
{v ∈ Rn+1 | ‖v‖2 = 1} is compact. Therefore, we have

ξ(δ)v>Ξ(δ)v ≥ v>
[

1

1>µ

][
1

1>µ

]>
v

for all v ∈ Rn+1, or equivalently,

ξ(δ)Ξ(δ) �

[
1

1>µ

][
1

1>µ

]>
.

For a fixed δ > 0, consider now a target objective τ ≥ 1
2n2 1>Σ1+ ξ(δ)

2n −
1>µ
n . As ξ(δ)

is decreasing in δ > 0, this lower bound on τ is increasing as δ decreases. Our next step
is to show that (x, x0, k) =

(
1
n ,

ξ(δ)−21>nµ
n , 1+δ

2n

)
is feasible in Problem (4.37). Observe

that

ξ(δ)Ξ(δ) �

[
1

1>µ

][
1

1>µ

]>
⇐⇒

 (1 + δ)In 1 1

1> n 1>µ

1> 1>µ ξ(δ)

 � 0

⇐⇒

 2knIn nx nx

nx> n nx>µ

nx> nx>µ nx0 + 2nx>µ

 � 0

where the first equivalence follows from Schur’s complement and the definition of Ξ(δ)
and the second follows from the suggested value of (x, x0, k). Dividing both sides
of the above inequality by n shows that (x, x0, k) satisfies the positive semidefinite
constraint in Problem (4.37). Besides, the remaining constraints in Problem (4.37) are
trivially satisfied. Therefore, k̄?(τ) cannot exceed 1+δ

2n . This result together with our
earlier observation (4.38) implies 1

2n ≤ k?(τ) ≤ k̄?(τ) ≤ 1+δ
2n . By taking the limit as

δ approaches zero from above and considering τ that exceeds the prescribed lower
bound (which itself increases as δ decreases), the theorem follows.

Evaluation and discussion of results:

Our asset universe consists of n = 8 assets with the following means and variances

µ = [0.12, 0.16, 0.14, 0.13, 0.15, 0.12, 0.14, 0.15]> ,

diag(Σ) =
[
0.182, 0.222, 0.202, 0.162, 0.142, 0.102, 0.142, 0.192

]>
.

We suppose further that the first four assets (and the last four) are from the same indus-
trial sector and are thus positively correlated with all pairwise correlations equal to 0.1
and that correlations between assets from different sectors are −0.1. We are now ready
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to compare the robust and the robust satisficing investment problems. To this end, for
any fixed r > 0, which characterizes the radius of the uncertainty set in Problem (4.35),
we solve the robust counterpart from Proposition 14. We denote the optimal objective
value and the optimal solution by Zr and xrb

r , respectively. Intuitively, we can inter-
pret Zr as the optimal (minimal) worst-case risk. We then solve the robust satisficing
problem (4.37) by setting the target risk as τ = Zr and denote the optimal solution by
xst
r . Then, compute the expected shortfall of both the robust and the robust satisficing

solution from

E
[
h(xrb

r , z̃)− Zr | h(xrb
r , z̃) > Zr

]
and E

[
h(xst

r , z̃)− Zr | h(xst
r , z̃) > Zr

]
as well as their probability of ruin

P
[
E
[
log
(

1 + r̃>xrb
)
| r̃ ∼ N (µ+ z̃,Σ)

]
< 0
]

and P
[
E
[
log
(

1 + r̃>xst
)
| r̃ ∼ N (µ+ z̃,Σ)

]
< 0
]

via simulation from 105 independent realizations of z̃ generated from N (0, sIn), for
some s > 0 (and 103 independent realizations of r̃ for each realization of z̃). The ob-
tained results are shown in Figure 4.1, and they are clearly in favour of the robust
satisficing solutions. Similar observations can be made for different choices of µ and
Σ.
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FIGURE 4.1: Expected shortfalls and probabilities of ruin of the robust optimization (rob
opt) and the robust satisficing (rob sat) growth-optimal portfolios.

4.5.2 Log-sum-exp optimization

Next, we consider robust optimization and satisficing problems involving biconvex
constraints (cf. Example 10). Particularly, we consider a robust optimization problem

Zr = min 1>x

s.t. gi(x, z) ≤ 0 ∀z ∈ Ur, i ∈ [m]

x ∈ Rnx ,
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where gi(x, z) = log
(
exp((−1 +Riz)>x) + exp((−1 + Siz)>x)

)
for some matrices

Ri,Si ∈ Rnx×nz . Since gi’s are convex in the uncertain z, it is typically not possible
to derive the exact robust counterpart by the standard duality argument (Ben-Tal and
Nemirovski, 1998) and instead one might need to resort to an approximation scheme
(see for e.g. Roos et al., 2020). For the robust satisficing formulation, we choose the
penalty function p(ζ) = ‖ζ‖1 and hence consider

min 1>k

s.t. gi(x, z) ≤ ki‖z‖1 ∀z ∈ Z, i ∈ [m]

1>x ≤ τ
x ∈ Rn, k ∈ Rm+ ,

where τ ≥ Z0 is the prescribed target objective. As discussed in Section 4.3, this prob-
lem can be solved approximately using affine dual recourse adaptation. In the follow-
ing, we assume that ẑ = 0 so that the nominal problem is bounded, the support set is
given byZ = {z ∈ Rnz : ‖z‖∞ ≤ 1}, and the uncertainty set is Ur = {z ∈ Rnz : ‖z‖∞ ≤ r},
r ∈ [0, 1].

We can cast the constraint functions gi’s in our conic framework as

gi(x, z) = min y

s.t.

 −1
−1
0

 y �K
 1>x

1>x
−1

+

 −x>Ri

−x>Si
0>

 z
y ∈ R,

where the coneK is given by cl ({v ∈ R× R× R++ : v3 log(exp(v1/v3) + exp(v2/v3)) ≤ 0}),
which is representable as an intersection of multiple exponential cones.

Evaluation and discussion of results:

We choose nx = m = 20 and nz = 5. We randomly generateRi and Si as matrices with
sparse density 0.1 whose non-zero elements are independently and uniformly picked
from the unit interval. To facilitate the comparison between the robust and the robust
satisficing models, for a fixed radius r ∈ [0, 1] of the robust uncertainty set, we solve
the robust log-sum-exp problem exactly by enumerating all vertices of the uncertainty
set, i.e., we solve

Zr = min 1>x

s.t. gi(x, z) ≤ 0 ∀z ∈ {−r,+r}nz

x ∈ Rnx

and denote the resulting robustly optimal solution by xrb
r . Subsequently, we solve

the robust satisficing problem only approximately using affine dual recourse adapta-
tion while setting the target objective τ to Zr and denote the optimal solution by xst

r .
Finally, we generate 105 independent realizations of z̃ (whose components are indepen-
dent and drawn uniformly from [0, 1]) to compute the normalized probability of constraint
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violation of xrb
r and xst

r :

1

m

m∑
i=1

P
[
gi(x

rb
r , z̃) > 0

]
and

1

m

m∑
i=1

P
[
gi(x

st
r , z̃) > 0

]
as well as their total expected shortfall:

m∑
i=1

E
[
gi(x

rb
r , z̃)

∣∣gi(xrb
r , z̃) > 0

]
and

m∑
i=1

E
[
gi(x

st
r , z̃)

∣∣gi(xst
r , z̃) > 0

]
.

Results from a hundred realizations of {(Ri,Si)}mi=1 are reported in Figure 4.2, where
we see the robust satisficing solutions stochastically dominate the robust solutions in
both performance metrics.
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FIGURE 4.2: Normalized probabilities of constraint violation and total expected short-
falls of the robust optimization (rob opt) and the robust satisficing (rob sat) log-
sum-exp solutions. Bold lines report mean values, whereas the shaded areas refer to

the 10%-90% percentile ranges.

4.5.3 Adaptive network lot-sizing

Next, we present a network lot-sizing example similar to Bertsimas and Ruiter (2016)
and Ruiter, Zhen, and Hertog (2018). Suppose that there are n nodes, each of which
faces a random demand zi, i ∈ [n]. Throughout, the support set of z is assumed to be a
hyperrectangle, i.e.,Z =

{
z ∈ Rnz+ | z ≤ z̄

}
. The initial stock xi ≥ 0 at each node is to be

determined prior to the realization of the random demands. Similarly, we impose that
X =

{
x ∈ Rnx+ | x ≤ x̄

}
. After observing the demand, we can transport stock yij ≥ 0

from node i to node j. To ensure that the demands can always be fulfilled, we allow for
an emergency order wi ≥ 0 to be made at each node. Initial and emergency orders are
purchased at the unit costs ci ≥ 0 and `i ≥ ci, respectively, while the unit transportation
costs are denoted by tij ≥ 0. It is assumed that tij is equal to the distance between the
two nodes, and hence tij = tji.
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First, we present the robust variant of the lot-sizing problem

Zr = min c>x+ x0

s.t. x+ Y (z)>1− Y (z)1 +w(z) ≥ z ∀z ∈ Ur
〈T ,Y (z)〉+ `>w(z) ≤ x0 ∀z ∈ Ur
Y (z) ≥ 0, w(z) ≥ 0 ∀z ∈ Ur
x ∈ X , x0 ∈ R, Y ∈ Rn,n×n, w ∈ Rn,n,

(4.39)

where Ur = {z ∈ Rn+ | z ≤ z̄, 1>z ≤ r} denotes the uncertainty set and the epigraph
variable x0 captures the worst-case transportation and emergency purchase costs. Sim-
ilar to the proof of Theorem 18, we can dualize Problem (4.39) twice (the first time over
the second-stage decisions Y ,w and the second time over the uncertain demands z) to
obtain an alternative formulation.

Proposition 16. Problem (4.39) is equivalent to

Zr = min c>x+ x0

s.t. β(ρ)>z̄ + β̂(ρ)r ≤ ρ>x+ x0 ∀ρ ∈ P
β(ρ) + β̂(ρ)1 ≥ ρ ∀ρ ∈ P
β(ρ) ≥ 0, β̂(ρ) ≥ 0 ∀ρ ∈ P
x ∈ X , x0 ∈ R, β ∈ Rn,n, β̂ ∈ Rn,1,

(4.40)

where the dual uncertainty set P is given by {ρ ∈ Rn+ : ρ ≤ `, ρ1> − 1ρ> ≤ T }.

Proof. We can express the robust constraints of Problem (4.39) as

max
z∈Ur

min
Y ≥0,w≥0

{
〈T ,Y 〉+ `>w | x+w + Y >1− Y 1 ≥ z

}
≤ x0

⇐⇒ max
z∈Ur

min
Y ≥0,w≥0

max
ρ≥0

{
〈T ,Y 〉+ `>w + ρ>

(
z − x−w + Y 1− Y >1

)}
≤ x0

⇐⇒ max
z∈Ur

max
ρ≥0

{
ρ>(z − x) + min

Y ≥0,w≥0

{〈
Y ,T + ρ1> − 1ρ>

〉
+ (`− ρ)>w

}}
≤ x0

⇐⇒ max
z∈Ur

max
ρ∈P

{
ρ>(z − x)

}
≤ x0

⇐⇒ max
ρ≥0

min
β≥0,β̂≥0

{
β>z̄ + β̂r | β + β̂1 ≥ ρ

}
≤ x0 + ρ>x.

Treating ρ as uncertainty as well as β and β̂ as dual recourse variables finally completes
the proof.

Due to the linearity of both formulations, we can solve Problems (4.39) and (4.40)
approximately using affine adaptations on the primal and dual recourse, respectively.
These approximations however turn out to be equivalent.

Proposition 17. Problems (4.39) and (4.40) attain the same objective value when solved ap-
proximately using affine recourse adaptation.
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Proof. In their Theorem 1, Bertsimas and Ruiter (2016) show an equivalent reformula-
tion of Problem (4.39) which is

min c>x+ x0

s.t. β(ρ, ρ̂)>z̄ + β̂(ρ, ρ̂)r ≤ ρ>x+ ρ̂x0 ∀(ρ, ρ̂) ∈ P̂
β(ρ, ρ̂) + β̂(ρ, ρ̂)1 ≥ ρ ∀(ρ, ρ̂) ∈ P̂
β(ρ, ρ̂) ≥ 0, β̂(ρ, ρ̂) ≥ 0 ∀(ρ, ρ̂) ∈ P̂
x ∈ X , x0 ∈ R, β ∈ Rn+1,n, β̂ ∈ Rn+1,1,

(4.41)

where P̂ = {(ρ, ρ̂) ∈ Rn+ × R+ | ρ ≤ ρ̂`, ρ1> − 1ρ> ≤ ρ̂T , 1>ρ + ρ̂ = 1}. They
also argue in their Theorem 2 that the respective affine recourse approximations of
Problems (4.39) and (4.41) are equivalent. As a result, it suffices to show that the affine
recourse approximations of Problems (4.40) and (4.41) are equivalent.

First, we write down the affine recourse approximation of Problem (4.40) by re-
stricting β(ρ) and β̂(ρ) to βi +βsρ and β̂i + β̂sρ (where ‘i’ and ‘s’ indicate the intercept
and slope of the affine decision rules), respectively, and obtain

min c>x+ x0

s.t. z̄>βi + rβ̂i +
(
z̄>βs + rβ̂s

)
ρ ≤ ρ>x+ x0 ∀ρ ∈ P

βi + 1β̂i +
(
βs + 1β̂s

)
ρ ≥ ρ ∀ρ ∈ P

βi + βsρ ≥ 0, β̂i + β̂sρ ≥ 0 ∀ρ ∈ P
x ∈ X , x0 ∈ R, βi ∈ Rn, βs ∈ Rn×n, β̂i ∈ R, β̂s ∈ R1×n.

(4.42)

Next, for Problem (4.41), we first observe that the uncertainty set P̂ requires ρ̂ to be lin-
early dependent on ρ. Hence, we can simply ignore the additional uncertain parameter
ρ̂ and work with the projection of P̂ on ρ. By a slight abuse of notation, we will denote
this projection by P̂ and note that

P̂ =
{
ρ ∈ Rn+ | ρ ≤

(
1− 1>ρ

)
`, ρ1> − 1ρ> ≤

(
1− 1>ρ

)
T
}
.

Note that as P̂ ⊂ Rn+ and as ` ≥ 0, it is a necessity that 1>ρ < 1 for all ρ ∈ P̂ . We
are now ready to present the explicit affine recourse approximation of Problem (4.41),
which is

min c>x+ x0

s.t. z̄>βi + rβ̂i +
(
z̄>βs + rβ̂s

)
ρ ≤ ρ>x+

(
1− 1>ρ

)
x0 ∀ρ ∈ P̂

βi + 1β̂i +
(
βs + 1β̂s

)
ρ ≥ ρ ∀ρ ∈ P̂

βi + βsρ ≥ 0, β̂i + β̂sρ ≥ 0 ∀ρ ∈ P̂
x ∈ X , x0 ∈ R, βi ∈ Rn, βs ∈ Rn×n, β̂i ∈ R, β̂s ∈ R1×n.

(4.43)

It remains to show that Problems (4.42) and (4.43) are equivalent. First, we will
show that Problem (4.43) is a relaxation of Problem (4.42). To this end, for any fea-
sible solution X = (x, x0,β

i,βs, β̂i, β̂s) of Problem (4.42), we will show that X ′ =
(x, x0,β

i,βs − βi1>, β̂i, β̂s − β̂i1>) is feasible in Problem (4.43). Note that, as both so-
lutions share the same x and the same x0, they attain the same objective value in their
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respective problem.
For any ρ ∈ P̂ , it is readily seen that ρ/(1 − 1>ρ) ∈ P . As a result, the feasibility

ofX in view of Problem (4.42) implies, for all ρ ∈ P̂ , that(
1− 1>ρ

)(
z̄>βi + rβ̂i

)
+
(
z̄>βs + ẑβ̂s

)
ρ ≤ ρ>x+

(
1− 1>ρ

)
x0,(

1− 1>ρ
)(
βi + 1β̂i

)
+
(
βs + 1β̂s

)
ρ ≥ ρ,(

1− 1>ρ
)
βi + βsρ ≥ 0,(

1− 1>ρ
)
β̂i + β̂sρ ≥ 0.

Rearranging terms in the above four inequalities yields

z̄>βi + rβ̂i +
(
z̄>
(
βs − βi1>

)
+ r
(
β̂s − β̂i1>

))
ρ ≤ ρ>x+

(
1− 1>ρ

)
x0,

βi + 1β̂i +
((
βs − βi1>

)
+ 1
(
β̂s − β̂i1>

))
ρ ≥ ρ,

βi +
(
βs − βi1>

)
ρ ≥ 0,

β̂i +
(
β̂s − β̂i1>

)
ρ ≥ 0,

for all ρ ∈ P̂ , which in turn implies thatX ′ is indeed feasible in Problem (4.43).
Conversely, for any feasible solution X = (x, x0,β

i,βs, β̂i, β̂s) of Problem (4.43),
one can similarly show that X ′ = (x, x0,β

i,βs + βi1>, β̂i, β̂s + β̂i1>) is feasible in
Problem (4.42) to conclude that Problem (4.42) is a relaxation of Problem (4.43). To see
this, observe that ρ/(1 + 1>ρ) ∈ P̂ for any ρ ∈ P . As a result, the feasibility of X in
view of Problem (4.43) implies, for all ρ ∈ P , that(

1 + 1>ρ
)(
z̄>βi + rβ̂i

)
+
(
z̄>βs + rβ̂s

)
ρ ≤ ρ>x+ x0,(

1 + 1>ρ
)(
βi + 1β̂i

)
+
(
βs + 1β̂s

)
ρ ≥ ρ,(

1 + 1>ρ
)
βi + βsρ ≥ 0,(

1 + 1>ρ
)
β̂i + β̂sρ ≥ 0.

Rearranging the terms in the above inequalities shows that X ′ is indeed feasible in
Problem (4.42) as desired. Therefore, the optimal objective value of Problem (4.42)
constitutes both a lower and an upper bound of that of Problem (4.43). The proof is
hence completed.

For the robust satisficing variant of the problem, we consider

min k

s.t. x+ Y (z)>1− Y (z)1 +w(z) ≥ z ∀z ∈ Z
c>x+ 〈T ,Y (z)〉+ `>w(z) ≤ τ + k‖z‖1 ∀z ∈ Z
Y (z) ≥ 0, w(z) ≥ 0 ∀z ∈ Z
x ∈ X , k ∈ R+, Y ∈ Rn,n×n, w ∈ Rn,n,

(4.44)

where τ ≥ Z0 = 0 is the prescribed target objective. The dualized formulation (4.13)
corresponding to this problem is explicitly given below.
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Proposition 18. Problem (4.44) is equivalent to

min k

s.t. (c− ρ)>x+ β(ρ)>z̄ ≤ τ ∀ρ ∈ P
β(ρ) + k1 ≥ ρ ∀ρ ∈ P
β(ρ) ≥ 0 ∀ρ ∈ P
x ∈ X , k ∈ R+, β ∈ Rn,n,

(4.45)

where the dual uncertainty set P is given by {ρ ∈ Rn+ : ρ ≤ `, ρ1> − 1ρ> ≤ T }.

Proof. The proof widely parallels to that of Proposition 16 and is thus omitted.

Proposition 19. Problems (4.44) and (4.45) attain the same objective value when solved ap-
proximately using affine recourse adaptation.

Proof. First, we can use Theorem 1 in Bertsimas and Ruiter (2016) to argue that Problem
(4.44) is equivalent to

min k

s.t. (ρ̂c− ρ)> x+ z̄>β(ρ, ρ̂) ≤ ρ̂τ ∀(ρ, ρ̂) ∈ P̂
β(ρ, ρ̂) + kρ̂1 ≥ ρ ∀(ρ, ρ̂) ∈ P̂
β(ρ, ρ̂) ≥ 0 ∀(ρ, ρ̂) ∈ P̂
x ∈ X , k ∈ R+, β ∈ Rn+1,n,

where P̂ is the same as that in the proof of Proposition 17. The proof largely follows
that of Proposition 17, i.e., one can show that the affine adaptation approximation of
the above problem is equivalent to that of (4.45), which in turn implies that the affine
recourse approximations of (4.44) and (4.45) are equivalent (see Theorem 2 in Bertsimas
and Ruiter, 2016). Details are omitted for the sake of brevity.

Evaluation and discussion of results:

We consider a network of n = 20 nodes with X = Z = [0, 20]n. To ensure suitable vari-
ability among the nodes, the components of the initial ordering cost c and emergency
cost ` are generated uniformly from [8, 10] and [18, 20] respectively. We then select the
node locations randomly from [0, 10]2 and accordingly compute the (Euclidean) dis-
tance matrix T . For the evaluation of the robust lot-sizing models, we vary r ≥ 0 and
approximate xrb

r by solving either solving (4.39) or (4.40) using affine recourse adapta-
tion. Similarly for the robust satisficing models, we vary τ ≥ 0 and determine approxi-
mate robust satisficing solutions xst

τ from either (4.44) or (4.45). We then compare their
respective first-stage costs (i.e., c>xrb

r and c>xst
τ ) with the expected total costs:

E
[
c>xrb

r + min
Y ≥0,w≥0

{
〈Y ,T 〉+ `>w | xrb

r + Y >1− Y 1 +w ≥ z̃
}]

, and

E
[
c>xst

τ + min
Y ≥0,w≥0

{
〈Y ,T 〉+ `>w | xst

τ + Y >1− Y 1 +w ≥ z̃
}]

,

from a hundred independent realizations of z̃ = z̃totz̃′/(1>nz z̃
′), where z̃tot representing

the total demand is drawn uniformly from [20
√
n, 40

√
n] while each component z̃′i is
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independently and uniformly drawn from [0, 1]. This is primarily to enforce possible
correlations between the demands.
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FIGURE 4.3: Costs and computational times (in seconds) of the robust optimization (rob
opt) and the robust satisficing (rob sat) lot-sizing solutions.

Figure 4.3 (left) shows the relative out-of-sample performance of the robust and ro-
bust satisficing models by comparing the expected total cost for the same first-stage
cost. The experiment is carried out multiple times, each with different (c, `,T ). We ar-
bitrarily highlight the results of a single run in bold curves and show those of another
four runs in dashed curves. The expected total cost appears to be minimized when
the first-stage cost is around 1, 150. When the manager is less committed to making
purchases in the first stage, she has to compensate with exorbitant costs in the sec-
ond stage via transhipment or emergency orders. On the other hand, if the manager
is overly committed in the first stage, the total cost could still be high because of the
excessive advance purchases. Figure 4.3 (right) compares the computational times re-
quired by Gurobi & RSOME in logarithmic scale of the primal robust problem (4.39),
dual robust problem (4.40), primal robust satisficing problem (4.44) and dual robust
satisficing problem (4.45) by varying the number of nodes n ∈ {10, 15, . . . , 100}. The
primal models (4.39) and (4.44) cannot be solved within a time limit of one hour when
the number of nodes exceed 80. When n = 100, the dual robust model (4.40) takes
about 15 minutes, whereas the dual robust satisficing model (4.45) takes only about 30
seconds. The better efficiency of the dual approaches was first observed and explained
in Bertsimas and Ruiter (2016). Table 4.1 summarizes the number of constraints and
decision variables in the robust counterparts of each of the four models discussed in
this section: the primal and dual robust models in (4.39), (4.40) and the primal and
dual robust satisficing models in (4.44) and (4.45).
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Primal formulation Dual formulation

Constraints Decision
Variables

Constraints Decision
VariablesAffine Non-negativity Affine Non-negativity

Robust (n+1)(n2+n+1) (n+1)(n2+n+1) (2n+1)(n2+n+1)
+1

2(n+ 1)2 2n2(n+ 1) 2n(n2 + n+ 1)
+(n+ 3)

Robust
Satisficing

(n+1)(n2+n+1) n(n2 + n+ 1) 2n(n2 +n+1)+1 (2n+1)(n+1) (2n+ 1)n2 2n(n2+n+1)+1

TABLE 4.1: Number of constraints and decision variables in the robust counterpart for-
mulations of the four lot-sizing models

Comparing the primal and dual models, the number of decision variables are similarly
growing as O(n3) and the affine constraints in both the primal counterparts grow as
O(n3) compared to O(n2) for the dual counterparts while the dual counterparts admit
more non-negativity constraints even though both grow as O(n3). This explains the
remarkable computational advantage of the dual models over the primal models as
demonstrated in Figure 4.3 (right), since non-negativity restrictions are much easier for
numerical solvers to handle when compared to affine constraints (see Section 5.3 in
Bertsimas and Ruiter, 2016, for an example).

4.6 Summary of Part II and future directions

This section summarizes the results in Part II of this dissertation and provides some
useful directions for future research.
Summary:
In summary, this chapter addressed conic uncertain optimization problems in the con-
text of the robust satisficing framework, which seeks to maintain the cost c>x below a
pre-specified target τ while simultaneously controlling the degree of infeasibility with
the robust satisficing parameter k. The constraint function g(x, z) we considered as
the optimal value of a conic optimization problem was broad enough to include a
wide variety of constraints and and problem classes. While quadratic constraints with
quadratic uncertainty support and penalty function led to an exact SDP reformulation
of the robust constraints, for generic conic uncertain problems with polyhedral support
sets and penalty functions, we exploited conic duality under suitable assumptions to
derive equivalent dual reformulations which can be approximated with affine recourse
adaptation. In both cases, feasibility of the reformulated model is guaranteed when
the target is strictly greater than the nominal optimal value Z0. The benefits of the dual
model are further illustrated in the special case of a non-negative orthant cone, wherein
we prove that despite being simpler, the affine recourse approximation of the dual re-
formulation provides a closer approximation of the original problem when compared
to a specific non-affine recourse approximation of the original problem itself. The three
numerical examples of growth optimal portfolio selection, log-sum-exp optimization
and adaptive lot-sizing demonstrated the improved performance of the robust satisfic-
ing framework over classical robust optimization both in terms of both modeling and
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computational speed metrics. Thus, the dual formulation provided tractability, feasibil-
ity and computational benefits over the original primal problem.

Future research questions:
We enlist below some future directions of this work:

i) While the double dualized reformulation in (4.13) for generic conic uncertain prob-
lems (with polyhedral support sets and penalty functions) is approximately tractable
and feasible, it still remains a challenge to interpret the dual recourse variables and
code the dual formulation for more complex cones than those considered in this chap-
ter. It would thus be interesting to explore methods and techniques to find tractable
primal reformulations that are more readily codable than the double dualized formu-
lation. In spirit, this could be similar to the approach followed in Chapter 3 where we
provided a direct primal proof of correctness to show equivalence between the large-
size and aggregated linear programs (for the tail probability, weighted tail probability
and expected stop-loss functions) instead of examining the dual formulations.

ii) The results in Theorem 17 could be extended to the case of quadratic constraints and
penalty function with uncertainty support which is the intersection of finitely many
bounded and non-empty ellipsoids instead of a single ellipsoid. Although the robust
counterpart with the intersection of ellipsoids is known to be NP-hard (see Section
3.2.2 in Ben-Tal and Nemirovski, 1998), it can be approximated by a single, explicit,
semidefinite program by using the approximate S-lemma (see Theorem 2.3 in Ben-Tal,
Nemirovski, and Roos, 2002). It would be interesting to see how the quality of approx-
imations with this approach (for the robust satisficing framework) compares with that
of the classical robust framework in Theorem 2.4 of Ben-Tal, Nemirovski, and Roos,
2002. Further, properly chosen ellipsoids and intersection of ellipsoids could be used
as reasonable approximations to more complicated uncertainty sets.

iii) In Section 4.4.1, the data-driven conic robust satisficing formulation in (4.31) suc-
cessfully recovered the data-driven robust satisficing model of Long, Sim, and Zhou
(2021) without introducing an ambiguity set of uncertain probability distributions. This
was achieved by suitably defining the contraint average function g and penalty average
function p. It would be interesting to explore if this approach can be combined with a
distributionally robust optimization approach like that in Long, Sim, and Zhou (2021).

iv) The computational speed results in Figure 4.3 (right) for the four lot-sizing models
were corraborated in Table 4.1 by delineating the number of decision variables, affine
and non-negativity constraints. However, it would be useful to specify how the time
complexity grows in (as a function of) the input size of the linear program being em-
ployed to solve the robust counterparts of the four models after approximating the dual
robust satisficing formulations using affine recourse adaptation.



References 148

List of references, Abstract
Boros, E. and A. Prékopa (1989). “Closed form two-sided bounds for probabilities that

at least r and exactly r out of n events occur”. In: Mathematics of Operations Research
14.2, pp. 317–342.

Jensen, Johan Ludwig William Valdemar et al. (1906). “Sur les fonctions convexes et les
inégalités entre les valeurs moyennes”. In: Acta mathematica 30, pp. 175–193.

Rüger, B. (1978). “Das maximale signifikanzniveau des Tests: “Lehne H0 ab, wennk
untern gegebenen tests zur ablehnung führen””. In: Metrika 25, pp. 171–178.

List of references, Chapter 1
Chen, Zhi, Melvyn Sim, and Peng Xiong (2020). “Robust stochastic optimization made

easy with RSOME”. In: Management Science 66.8, pp. 3329–3339.
Dantzig, George B (1982). “Reminiscences about the origins of linear programming”.

In: Operations Research Letters 1.2, pp. 43–48.
Grötschel, Martin, László Lovász, and Alexander Schrijver (2012). Geometric algorithms

and combinatorial optimization. Vol. 2. Springer Science & Business Media.
Karush, W. (1939). “Minima of functions of several variables with inequalities as side

constraints”. In: M. Sc. Dissertation. Dept. of Mathematics, Univ. of Chicago. URL: https:
//ci.nii.ac.jp/naid/10027639655/en/.

Kuhn, Harold W and Albert W Tucker (1951). “Nonlinear programming”. In: Proc. 2nd
Berkeley Symposium on Mathematical Statistics and Probability, pp. 481–492.

Löfberg, J. (2004). “YALMIP: A Toolbox for Modeling and Optimization in MATLAB”.
In: In Proceedings of the CACSD Conference. Taipei, Taiwan.

Long, D., M. Sim, and M. Zhou (2021). “Robust Satisficing”. Preprint available at SSRN
(3478930).

Natarajan, Karthik (2021). Optimization with marginals and moments (upcoming). Dynamic
ideas.

List of references, Chapter 2
Agrawal, S. et al. (2012). “Price of correlations in stochastic optimization”. In: Operations

Research 1.60, pp. 150–162.
Babai, L. (2013). “Entropy versus pairwise independence (preliminary version)”. In:

URL: http://people.cs.uchicago.edu/~laci/papers/13augEntropy.
pdf.

Benjamini, Itai, Ori Gurel-Gurevich, and Ron Peled (2012). “On K-wise Independent
Distributions and Boolean Functions”. Preprint available on arXiv (1201.3261).

Bernstein, SN (1946). Theory of probability. 3rd ed. Gostechizdat, Moscow-Leningrad (in
Russian).

Bonferroni, C (1936). “Teoria statistica delle classi e calcolo delle probabilita”. In: Pubbli-
cazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze 8, pp. 3–
62.

Boole, G. (1854). The Laws of Thought (1916 reprint). Open Court, Chicago.
Boros, E. and A. Prékopa (1989). “Closed form two-sided bounds for probabilities that

at least r and exactly r out of n events occur”. In: Mathematics of Operations Research
14.2, pp. 317–342.

Boros, E. et al. (2014). “Polynomially computable bounds for the probability of the
union of events”. In: Mathematics of Operations Research 39.4, pp. 1311–1329.

https://ci.nii.ac.jp/naid/10027639655/en/
https://ci.nii.ac.jp/naid/10027639655/en/
http://people.cs.uchicago.edu/~laci/papers/13augEntropy.pdf
http://people.cs.uchicago.edu/~laci/papers/13augEntropy.pdf


References 149

Caen, D. de (1997). “A lower bound on the probability of a union”. In: Discrete Mathe-
matics 169.1-3, pp. 217–220.

Calinescu, G. et al. (2007). “Maximizing a monotone submodular function subject to a
matroid constraint”. In: SIAM Journal on Computing 40.6, pp. 1740–1766.

Chaganty, N. R. and H. Joe (2006). “Range of correlation matrices for dependent Bernoulli
random variables”. In: Biometrika 1.931, pp. 197–206.

Chebyshev, P. (1867). “Des valeurs moyennes”. In: Journal de Mathématiques Pures et
Appliquées 2, pp. 177–184.

Chernoff, H. (1952). “A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations”. In: Annals of Mathematical Statistics 23, pp. 493–509.

Courtois, Cindy and Michel Denuit (2009). “Moment bounds on discrete expected stop-
loss transforms, with applications”. In: Methodology and Computing in Applied Proba-
bility 11.3, pp. 307–338.

Dawson, D. A. and D. Sankoff (1967). “An inequality for probabilities”. In: Proceedings
of the American Mathematical Society 18.3, pp. 504–507.

Dohmen, K. and P. Tittmann (2007). “Improved Bonferroni inequalities and binomially
bounded functions”. In: Electronic Notes in Discrete Mathematics 28, pp. 91–93.

Emrich, L. J. and M. R. Piedmonte (1991). “A method for generating high-dimensional
multivariate binary variates”. In: The American Statistician 45.4, pp. 302–304.

Feige, Uriel (2006). “On sums of independent random variables with unbounded vari-
ance and estimating the average degree in a graph”. In: SIAM Journal on Computing
35.4, pp. 964–984.

Feller, W. (1959). “Non-Markovian processes with the semigroup property”. In: The
Annals of Mathematical Statistics 30.4, pp. 1252–1253.

Feller, W. (1968). An Introduction to Probability Theory and Its Applications: Volume I. 3rd ed.
Wiley Series in Probability and Mathematical Statistics.

Fréchet, M. (1935). “Généralisation du théoreme des probabilités totales”. In: Funda-
menta mMthematicae 1.25, pp. 379–387.

Galambos, J. (1975). “Methods for proving Bonferroni type inequalities”. In: Journal of
the London Mathematical Society 2.4, pp. 561–564.

Galambos, J. (1977). “Bonferroni inequalities”. In: The Annals of Probability, pp. 577–581.
Garnett, B. (2020). “Small deviations of sums of independent random variables”. In:

Journal of Combinatorial Theory, Series A 169, pp. 105–119.
Gavinsky, D. and P. Pudlák (2016). “On the joint entropy of d-wise-independent vari-

ables”. In: Commentationes Mathematicae Universitatis Carolinae 57, pp. 333–343.
Geisser, S. and N. Mantel (1962). “Pairwise independence of jointly dependent vari-

ables”. In: The Annals of Mathematical Statistics 33.1, pp. 290–291.
Goemans, M. (2015). “Chernoff bounds, and some applications”. In: Lecture Notes, MIT.
Hailperin, T. (1965a). “Best possible inequalities for the probability of a logical function

of events”. In: The American Mathematical Monthly 72.4, pp. 343–359.
Hoeffding, W. (1963). “Probability inequalities for sums of bounded random variables”.

In: Journal of the American Statistical Association 58, pp. 13–30.
Hunter, D. (1976). “An upper bound for the probability of a union”. In: Journal of Applied

Probability 13.3, pp. 597–603.
Jensen, Johan Ludwig William Valdemar et al. (1906). “Sur les fonctions convexes et les

inégalités entre les valeurs moyennes”. In: Acta mathematica 30, pp. 175–193.
Joffe, A. (1974). “On a set of almost deterministic k-independent random variables”. In:

The Annals of Probability 2.1, pp. 161–162.



References 150

Karloff, H. and Y. Mansour (1994). “On construction of k-wise independent random
variables”. In: Proceedings of the 26th Annual ACM Symposium on Theory of Computing,
pp. 564–573.

Koller, D. and N. Meggido (1994). “Construcing small sample spaces satisfying given
constraints”. In: SIAM Journal on Discrete Mathematics 7.2, pp. 260–274.

Kounias, E. G. (1968). “Bounds for the probability of a union, with applications”. In:
The Annals of Mathematical Statistics 39.6, pp. 2154–2158.

Kounias, S. and J. Marin (1976). “Best linear Bonferroni bounds”. In: SIAM Journal on
Applied Mathematics 30.2, pp. 307–323.

Kuai, H., F. Alajaji, and G. Takahara (2000). “A lower bound on the probability of a
finite union of events”. In: Discrete Mathematics 215.1-3, pp. 147–158.

Kwerel, S. M. (1975b). “Most stringent bounds on aggregated probabilities of partially
specified dependent probability systems”. In: Journal of the American Statistical Asso-
ciation 70.350, pp. 472–479.

Lancaster, H. O. (1965). “Pairwise statistical independence”. In: The Annals of Mathemat-
ical Statistics 36.4, pp. 1313–1317.

Luby, M. and A. Widgerson (2005). “Pairwise independence and derandomization”. In:
Foundations and Trends in Theoretical Computer Science 1.4, pp. 239–201.

Lunn, A. D. and S. J. Davies (1998). “A note on generating correlated binary variables”.
In: Biometrika 85.2, pp. 487–490.

Maurer, W. (1983). “Bivalent trees and forests or upper bounds for the probability of a
union revisited”. In: Discrete Applied Mathematics 6.2, pp. 157–171.

Móri, T. F. and J. G. Székely (1985). “A note on the background of several Bonferroni–
Galambos-type inequalities”. In: Journal of Applied Probability 22.4, pp. 836–843.

Narayanan, Shyam (2019). “Pairwise Independent Random Walks Can Be Slightly Un-
bounded”. In: Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques (APPROX/RANDOM 2019). Vol. 145. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 63:1–63:19.

Ninh, Anh, Honggang Hu, and David Allen (2019). “Robust newsvendor problems:
Effect of discrete demands”. In: Annals of Operations Research 275.2, pp. 607–621.

O’Brien, G. L. (1980). “Pairwise independent random variables”. In: The Annals of Prob-
ability 8.1, pp. 170–175.

Pass, B. and S. Spektor (2018). “On Khintchine type inequalities for k-wise independent
Rademacher random variables”. In: Statistics & Probability Letters 132, pp. 35–39.

Peled, R., A. Yadin, and A. Yehudayoff (2011). “The maximal probability that k-wise
independent bits are all 1”. In: Random Structures & Algorithms 38.4, pp. 502–525.

Pitowsky, I. (1991). “Correlation polytopes: Their geometry and complexity”. In: Math-
ematical Programming 50, pp. 395–414.

Platz, O. (1985). “A sharp upper probability bound for the occurrence of at least m out
of n events”. In: Journal of Applied Probability 22.4, pp. 978–981.

Prékopa, A. (1988). “Boole-Bonferroni inequalities and linear programming”. In: Oper-
ations Research 36.1, pp. 145–162.

Prékopa, A. (1990a). “Sharp bounds on probabilities using linear programming”. In:
Operations Research 38.2, pp. 227–239.

Prékopa, A. (1990b). “The discrete moment problem and linear programming”. In: Dis-
crete Applied Mathematics 27, pp. 235–254.

Prékopa, A. and L. Gao (2005). “Bounding the probability of the union of events by ag-
gregation and disaggregation in linear programs”. In: Discrete Applied Mathematics
145.3, pp. 444–454.



References 151

Qaqish, B. F. (2003). “A family of multivariate binary distributions for simulating corre-
lated binary variables with specified marginal means and correlations”. In: Biometrika
90.2, pp. 455–463.

Qiu, F., S. Ahmed, and S. S. Dey (2016). “Strengthened bounds for the probability of
k-out-of-n events”. In: Discrete Applied Mathematics 198, pp. 232–240.

Ramachandra, Arjun and Karthik Natarajan (2021). “Tight Probability Bounds with
Pairwise Independence”. Preprint available on arXiv (2006.00516).

Rüger, B. (1978). “Das maximale signifikanzniveau des Tests: “Lehne H0 ab, wennk
untern gegebenen tests zur ablehnung führen””. In: Metrika 25, pp. 171–178.

Sathe, Y. S., M. Pradhan, and S. P. Shah (1980). “Inequalities for the probability of the oc-
currence of at least m out of n events”. In: Journal of Applied Probability 17.4, pp. 1127–
1132.

Schmidt, J., A. Siegel, and A. Srinivasan (1995). “Chernoff–Hoeffding bounds for ap-
plications with limited independence”. In: SIAM Journal on Discrete Mathematics 8.2,
pp. 223–250.

Tao, T. (2012). Topics in random matrix theory. Vol. 132. Graduate Studies in Mathematics,
American Mathematical Society.

Tchen, André H (1980). “Inequalities for distributions with given marginals”. In: The
Annals of Probability, pp. 814–827.

Veneziani, P. (Feb. 2008a). “Graph-based upper bounds for the probability of the union
of events”. In: The Electronic Journal of Combinatorics 15.

Veneziani, P. (Dec. 2008b). “Optimality conditions for Hunter’s bound”. In: Discrete
Mathematics 308, pp. 6009–6014.

Vizvári, B. (2007). “New upper bounds on the probability of events based on graph
structures”. In: Mathematical Inequalities and Applications 10.1, p. 217.

Wang, Xuan and Jiawei Zhang (2015). “Process flexibility: A distribution-free bound on
the performance of k-chain”. In: Operations Research 63.3, pp. 555–571.

Worsley, K. J. (1982). “An improved Bonferroni inequality and applications”. In: Biometrika
69.2, pp. 297–302.

Yang, J., F. Alajaji, and G. Takahara (2016). “Lower bounds on the probability of a finite
union of events”. In: SIAM Journal on Discrete Mathematics 30.3, pp. 1437–1452.

Yoda, K. and A. Prékopa (2016). “Improved bounds on the probability of the union of
events some of whose intersections are empty”. In: Operations Research Letters 44.1,
pp. 39–43.

List of references, Chapter 3
Arratia, Richard, Larry Goldstein, and Louis Gordon (1990). “Poisson approximation

and the Chen-Stein method”. In: Statistical Science, pp. 403–424.
Blanchet, Jose et al. (2021). “Convolution Bounds on Quantile Aggregation”. Preprint

available on arXiv (2007.09320).
Bonferroni, C (1936). “Teoria statistica delle classi e calcolo delle probabilita”. In: Pubbli-

cazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze 8, pp. 3–
62.

Boros, E. and A. Prékopa (1989). “Closed form two-sided bounds for probabilities that
at least r and exactly r out of n events occur”. In: Mathematics of Operations Research
14.2, pp. 317–342.

Boros, E. et al. (2014). “Polynomially computable bounds for the probability of the
union of events”. In: Mathematics of Operations Research 39.4, pp. 1311–1329.



References 152

Chen, Louis HY (1975). “Poisson approximation for dependent trials”. In: The Annals of
Probability, pp. 534–545.

Dhaene, Jan et al. (2000). “Comonotonicity and maximal stop-loss premiums”. In: Bul-
letin of the Swiss Association of Actuaries 2, pp. 99–113.

Dhaene, Jan et al. (2002a). “The concept of comonotonicity in actuarial science and fi-
nance: applications”. In: Insurance: Mathematics and Economics 31.2, pp. 133–161.

Dhaene, Jan et al. (2002b). “The concept of comonotonicity in actuarial science and
finance: theory”. In: Insurance: Mathematics and Economics 31.1, pp. 3–33.

Embrechts, Paul and Giovanni Puccetti (2010). “Bounds for the sum of dependent risks
having overlapping marginals”. In: Journal of Multivariate Analysis 101.1, pp. 177–
190.

Fréchet, M. (1935). “Généralisation du théoreme des probabilités totales”. In: Funda-
menta mMthematicae 1.25, pp. 379–387.

Grötschel, Martin, László Lovász, and Alexander Schrijver (2012). Geometric algorithms
and combinatorial optimization. Vol. 2. Springer Science & Business Media.

Hailperin, Theodore (1965b). “Best possible inequalities for the probability of a logical
function of events”. In: The American Mathematical Monthly 72.4, pp. 343–359.

Hunter, D. (1976). “An upper bound for the probability of a union”. In: Journal of Applied
Probability 13.3, pp. 597–603.

Jensen, Johan Ludwig William Valdemar et al. (1906). “Sur les fonctions convexes et les
inégalités entre les valeurs moyennes”. In: Acta mathematica 30, pp. 175–193.

Kleinberg, Jon, Yuval Rabani, and Éva Tardos (2000). “Allocating bandwidth for bursty
connections”. In: SIAM Journal on Computing 30.1, pp. 191–217.

Kreinovich, Vladik and Scott Ferson (2006). “Computing best-possible bounds for the
distribution of a sum of several variables is NP-hard”. In: International Journal of
Approximate Reasoning 41.3, pp. 331–342.

Kwerel, S. M. (1975b). “Most stringent bounds on aggregated probabilities of partially
specified dependent probability systems”. In: Journal of the American Statistical Asso-
ciation 70.350, pp. 472–479.

Le Cam, Lucien (1960). “An approximation theorem for the Poisson binomial distribu-
tion.” In: Pacific Journal of Mathematics 10.4, pp. 1181–1197.

Morgenstern, Dietrich (1980). “Berechnung des maximalen Signifikanzniveaus des Testes
„LehneH 0 ab, wennk untern gegebenen Tests zur Ablehnung führen””. In: Metrika
27.1, pp. 285–286.

Müller, Alfred (1997). “Stop-loss order for portfolios of dependent risks”. In: Insurance:
Mathematics and Economics 21.3, pp. 219–223.

Natarajan, Karthik (2021). Optimization with marginals and moments (upcoming). Dynamic
ideas.

Ninh, Anh, Honggang Hu, and David Allen (2019). “Robust newsvendor problems:
Effect of discrete demands”. In: Annals of Operations Research 275.2, pp. 607–621.

Padmanabhan, Divya and Karthik Natarajan (2021). “Tree Bounds for Sums of Bernoulli
Random Variables: A Linear Optimization Approach”. In: Informs Journal on Opti-
mization 3.1, pp. 23–45.

Padmanabhan, Divya et al. (2021). “Extremal probability bounds in combinatorial op-
timization”. Preprint available on arXiv (2109.01591).

Pitowsky, I. (1991). “Correlation polytopes: Their geometry and complexity”. In: Math-
ematical Programming 50, pp. 395–414.



References 153

Prékopa, A. and L. Gao (2005). “Bounding the probability of the union of events by ag-
gregation and disaggregation in linear programs”. In: Discrete Applied Mathematics
145.3, pp. 444–454.

Prékopa, András, Béla Vizvári, and Gábor Regös (1997). A method of disaggregation for
bounding probabilities of Boolean functions of events. Research Report. Rutgers Center
for Operations Research [RUTCOR], Rutgers University.

Puccetti, Giovanni and Ludger Rüschendorf (2012). “Bounds for joint portfolios of de-
pendent risks”. In: Statistics & Risk Modeling 29.2, pp. 107–132.

Qiu, F., S. Ahmed, and S. S. Dey (2016). “Strengthened bounds for the probability of
k-out-of-n events”. In: Discrete Applied Mathematics 198, pp. 232–240.

Ramachandra, Arjun and Karthik Natarajan (2021). “Tight Probability Bounds with
Pairwise Independence”. Preprint available on arXiv (2006.00516).

Rüger, B. (1978). “Das maximale signifikanzniveau des Tests: “Lehne H0 ab, wennk
untern gegebenen tests zur ablehnung führen””. In: Metrika 25, pp. 171–178.

Rüger, B. (1981). “Scharfe untere und obere Schranken für die Wahrscheinlichkeit der
Realisation vonk untern Ereignissen”. In: Metrika 28.1, pp. 71–77.

Rüschendorf, Ludger (1991). “Bounds for distributions with multivariate marginals”.
In: Lecture Notes-Monograph Series, pp. 285–310.

Rüschendorf, Ludger (2013). Mathematical risk analysis, Dependence, Risk Bounds, Optimal
Allocations and Portfolios. Springer Berlin Heidelberg.

Stein, Charles (1972). “A bound for the error in the normal approximation to the distri-
bution of a sum of dependent random variables”. In: Proceedings of the sixth Berkeley
symposium on mathematical statistics and probability, volume 2: Probability theory. Uni-
versity of California Press, pp. 583–602.

Tchen, André H (1980). “Inequalities for distributions with given marginals”. In: The
Annals of Probability, pp. 814–827.

Wang, Ruodu, Liang Peng, and Jingping Yang (2013). “Bounds for the sum of depen-
dent risks and worst Value-at-Risk with monotone marginal densities”. In: Finance
and Stochastics 17.2, pp. 395–417.

Worsley, K. J. (1982). “An improved Bonferroni inequality and applications”. In: Biometrika
69.2, pp. 297–302.

Yang, J., F. Alajaji, and G. Takahara (2016). “Lower bounds on the probability of a finite
union of events”. In: SIAM Journal on Discrete Mathematics 30.3, pp. 1437–1452.

Zemel, Eitan (1982). “Polynomial algorithms for estimating network reliability”. In:
Networks 12.4, pp. 439–452.

List of references, Chapter 4
Ben-Tal, A., L. El Ghaoui, and A. Nemirovski (2009). Robust optimization. Princeton Uni-

versity Press.
Ben-Tal, A. and A. Nemirovski (1998). “Robust Convex Optimization”. In: Mathematics

of Operations Research 23.4, pp. 769–805.
Ben-Tal, A. and A. Nemirovski (2001). “On polyhedral approximations of the second-

order cone”. In: Mathematics of Operations Research 26.2, pp. 193–205.
Ben-Tal, A., A. Nemirovski, and C. Roos (2002). “Robust solutions of uncertain quadratic

and conic-quadratic problems”. In: SIAM Journal on Optimization 13.2, pp. 535–560.
Ben-Tal, A. et al. (2004). “Adjustable robust solutions of uncertain linear programs”. In:

Mathematical programming 99.2, pp. 351–376.
Ben-Tal, A. et al. (2013). “Robust solutions of optimization problems affected by uncer-

tain probabilities”. In: Management Science 59.2, pp. 341–357.



References 154

Ben-Tal, A. et al. (2017). “Globalized robust optimization for nonlinear uncertain in-
equalities”. In: INFORMS Journal on Computing 29.2, pp. 350–366.

Bertsimas, D., D. Iancu, and P. Parrilo (2010). “Optimality of affine policies in multistage
robust optimization”. In: Mathematics of Operations Research 35.2, pp. 363–394.

Bertsimas, D. and F. de Ruiter (2016). “Duality in Two-Stage Adaptive Linear Optimiza-
tion: Faster Computation and Stronger Bounds”. In: INFORMS Journal on Computing
28.3, pp. 500–511.

Bertsimas, D. and M. Sim (2003). “Robust discrete optimization and network flows”.
In: Mathematical Programming 98.1, pp. 49–71.

Bertsimas, D. and M. Sim (2004). “The price of robustness”. In: Operations Research 52.1,
pp. 35–53.

Bertsimas, D. and M. Sim (2006). “Tractable approximations to robust conic optimiza-
tion problems”. In: Mathematical programming 107.1, pp. 5–36.

Bertsimas, D., M. Sim, and M. Zhang (2019). “Adaptive distributionally robust opti-
mization”. In: Management Science 65.2, pp. 604–618.

Birge, J. and F. Louveaux (2011). Introduction to stochastic programming. Springer Science
& Business Media.

Brown, D. and M. Sim (2009). “Satisficing measures for analysis of risky positions”. In:
Management Science 55.1, pp. 71–84.

Chen, Zhi, Melvyn Sim, and Peng Xiong (2020). “Robust stochastic optimization made
easy with RSOME”. In: Management Science 66.8, pp. 3329–3339.

Delage, E. and D. Iancu (2015). “Robust multistage decision making”. In: The Operations
Research Revolution, pp. 20–46.

Delage, E. and Y. Ye (2010). “Distributionally robust optimization under moment un-
certainty with application to data-driven problems”. In: Operations research 58.3,
pp. 595–612.

DeMiguel, V., L. Garlappi, and R. Uppal (Dec. 2007). “Optimal Versus Naive Diversi-
fication: How Inefficient is the 1/N Portfolio Strategy?” In: The Review of Financial
Studies 22.5, pp. 1915–1953.

El Ghaoui, L., F. Oustry, and H. Lebret (1998). “Robust solutions to uncertain semidefi-
nite programs”. In: SIAM Journal on Optimization 9.1, pp. 33–52.

Iancu, D., M. Sharma, and M. Sviridenko (2013). “Supermodularity and affine policies
in dynamic robust optimization”. In: Operations Research 61.4, pp. 941–956.

Kuhn, D., W. Wiesemann, and A. Georghiou (2011). “Primal and dual linear decision
rules in stochastic and robust optimization”. In: Mathematical Programming 130.1,
pp. 177–209.

Löfberg, J. (2004). “YALMIP: A Toolbox for Modeling and Optimization in MATLAB”.
In: In Proceedings of the CACSD Conference. Taipei, Taiwan.

Long, D., M. Sim, and M. Zhou (2021). “Robust Satisficing”. Preprint available at SSRN
(3478930).

Mohajerin Esfahani, P. and D. Kuhn (2018). “Data-driven distributionally robust opti-
mization using the Wasserstein metric: Performance guarantees and tractable refor-
mulations”. In: Mathematical Programming 171.1, pp. 115–166.

Ramachandra, Arjun, Napat Rujeerapaiboon, and Melvyn Sim (2021). “Robust Conic
Satisficing”. Preprint available on arXiv (2107.06714).

Roos, E. et al. (2020). “Tractable approximation of hard uncertain optimization prob-
lems”. Preprint available on Optimization-Online.

Ruiter, F. de, J. Zhen, and D. den Hertog (2018). “Dual approach for two-stage robust
nonlinear optimization”. Preprint available on Optimization-Online.



References 155

Rujeerapaiboon, N., D. Kuhn, and W. Wiesemann (2016). “Robust Growth-Optimal
Portfolios”. In: Management Science 62.7, pp. 2090–2109.

Schwartz, B., Y. Ben-Haim, and C. Dacso (2011). “What makes a good decision? Robust
satisficing as a normative standard of rational decision making”. In: Journal for the
Theory of Social Behaviour 41.2, pp. 209–227.
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Appendix A

A.1 Proof of Theorem 7

Proof. With identical pairwise independent variables, it is straightforward to show that,
similar to the probability objective in (2.28), the large-sized linear program (2.50) with
the expectation objective is equivalent to the corresponding aggregated linear program
proposed by Boros and Prékopa (1989) and Prékopa (1990a):

BPpw(n, k, p) = max
n∑

`=k+1

(`− k)v`

s.t.
n∑
`=2

(
`

2

)
v` =

(
n

2

)
p2

n∑
`=0

v` = 1

n∑
`=1

`v` = np

v` ≥ 0, ∀` ∈ [0, n],

(A.1)

The proof of equivalence is identical to that in the proof of Theorem 4 with the only
difference being in the structure of the objective function. The proof of the closed form
expression for the tight upper bound in Theorem 7 broadly follows that of the corre-
sponding closed-form in (2.27) for the probability objective function, derived in Boros
and Prékopa (1989) by determining valid primal and dual feasible bases which attain
the bound.
Denote by a0,a1, ....,an the column vectors of the constraint matrix in the linear pro-
gram (A.1). Corresponding to the three constraints, let J = {i, j, `} denote the set of
subscripts of a basic feasible solution vector (vi, vj , v`) and B = [ai,aj ,a`] denote a
basis matrix assuming that the basis columns are placed in the increasing order of their
subscripts (i < j < `). Then from Section 3 in Prékopa (1988), the constraint matrix
is a Pascal matrix while the basis matrix B is a minor of the constraint matrix with
every upper triangular element assuming a strictly positive value. From Theorem 4 in
the same section, it must be true that the determinant of B satisfies |B| > 0. We first
analyze the necessary conditions on the basis indices i, j, ` to guarantee dual feasibility
depending on the position of k relative to these indices.
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A.1.1 Dual feasibility conditions

Denote by c>B = [ci, cj , c`] the cost vector from the objective in (A.1) corresponding to
the basis indices in J and by cm the cost vector components corresponding to the non-
basic indices m ∈ [n] \ J . The dual feasibility conditions for the maximization problem
in (A.1) are given by:

c>BB
−1am ≥ cm, ∀m ∈ [n] \ J (A.2)

From Section 5 in Prékopa (1988), the condition in (A.2) can be reformulated as the
non-positivity of the first component of the solution vector(

1 c>B
0 B

)−1(
cm
am

)
, ∀m ∈ [n] \ J (A.3)

which in turn can be formulated using Cramer’s rule as:∣∣∣∣cm c>B
am B

∣∣∣∣/ ∣∣∣∣1 c>B
0 B

∣∣∣∣ ≤ 0, ∀m ∈ [n] \ J (A.4)

Since |B| > 0 , the determinant in the denominator is strictly positive and thus we only
need to ensure that ∣∣∣∣cm c>B

am B

∣∣∣∣ ≤ 0, ∀m ∈ [n] \ J (A.5)

From the objective function coefficients in (A.1), the components of the cost vector c>B
and cm depend on the position of k relative to the basis indices i, j, `. The following
four basis types correspond to these positions:

Basis type 0: k ≤ i < j < `
Basis type 1: i < j ≤ k < `
Basis type 2: i < k ≤ j < `
Basis type 3: i < j < ` ≤ k

(A.6)

We note that the basis type 0 can hold only for k = 0. Otherwise, k ≤ i < j < ` is ruled
out since in that case c>B = [i−k, j−k, `−k] and it is easy to show that the determinant
in (A.5) would be strictly positive when cm = 0 (m ≤ k − 1, where m ∈ [n] \ J) since

∣∣∣∣∣∣∣∣∣∣
0 i− k j − k `− k
1 1 1 1

m i j `(
m
2

) (
i
2

) (
j
2

) (
`
2

)

∣∣∣∣∣∣∣∣∣∣
R1−R3+kR2−→

∣∣∣∣∣∣∣∣∣∣
k −m 0 0 0

1 1 1 1

m i j `(
m
2

) (
i
2

) (
j
2

) (
`
2

)

∣∣∣∣∣∣∣∣∣∣
= (k −m)|B| > 0

When k = 0, c>B = [i, j, `] and the tight bound from (A.1) is given by the mean:

E(n, 0, p) = ivi + jvj + `v` = np

Similarly the basis type 3 holds only for k = n with E(n, n, p) = 0. Otherwise, i < j <
` ≤ k is ruled out since in that case c>B = [0, 0, 0] and the determinant in (A.5) would
be strictly positive when cm > 0 (m ≥ k + 1, where m ∈ [n] \ J). In other words,



Appendix A. 158

for any p ∈ (0, 1), the maximization problem (A.1) admits an objective function value
E(n, k, p) = np and E(n, k, p) = 0 if and only if k = 0 and k = n respectively. We now
delineate the necessary conditions for bases of types 1 and 2 to be dual feasible.

A) Basis type 1:

We now consider the first basis type ( i < j < k < `) from (A.6). The corresponding
cost vector is c>B = [0, 0, `− k]. From (A.5), we have the determinant inequality∣∣∣∣∣∣∣∣∣∣

cm 0 0 `− k

1 1 1 1

m i j `(
m
2

) (
i
2

) (
j
2

) (
`
2

)

∣∣∣∣∣∣∣∣∣∣
≤ 0, ∀m ∈ [n] \ J (A.7)

i) m ≤ k
If m ≤ k, then cm = 0 and from (A.7) we need

(−1)3+1(`− k)

∣∣∣∣∣∣∣
1 1 1

m i j(
m
2

) (
i
2

) (
j
2

)
∣∣∣∣∣∣∣ = (−1

2)(`− k)(i−m)(j −m)(j − i) ≤ 0, ∀m ∈ [n] \ J

where the latter expression is from the well-known Vandermonde determinant. Since
i < j < k < ` we need

(m− i)(m− j) ≥ 0, ∀m ∈ [k] \ J
m ≤ i or m ≥ j, ∀m ∈ [k] \ J
or j = i+ 1, j ∈ [1, k − 1]

(A.8)

where [k] \ J = {1, .., i − 1, i + 2, ...k} since the indices i, j satisfy i + 1 = j < k. The
condition that the indices i, j are consecutive is similar to the third type basis {j−1, j, k}
for the probability bound in (2.32) except that the third index k is not included in the
basis here, the reason for which will be discussed later in the primal feasibility section
of this proof. For this reason, we will henceforward consider only strict inequalities for
the conditions in (A.6).

ii) m > k
If m > k, then cm = m− k and and from (A.7) we have the determinant inequality∣∣∣∣∣∣∣∣∣∣

m− k 0 0 `− k

1 1 1 1

m i j `(
m
2

) (
i
2

) (
j
2

) (
`
2

)

∣∣∣∣∣∣∣∣∣∣
≤ 0, ∀m ∈ [k + 1, n] \ J (A.9)

or
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1
2 [(m− k)(`− i)(`− j)(j − i)

− (1
2)(`− k)(i−m)(j −m)(j − i)

]
≤ 0, ∀m ∈ [k + 1, n] \ J

(j − i)
[

(`− i)(`− j)
`− k

− (m− i)(m− j)
m− k

]
≤ 0, ∀m ∈ [k + 1, n] \ J

(`− i)(`− j)
`− k

≤ (m− i)(m− j)
m− k

, ∀m ∈ [k + 1, n] \ J

(A.10)

where the last inequality is due to j > i and [k + 1, n] \ J = {k + 1, .., `− 1, `+ 1, ...n}.
For a given i, j, k (where i < j < k), it can be seen that both the functions (`−i)(`−j)

`−k
and (m−i)(m−j)

m−k are identical piece-wise linear convex in ` and m respectively when
` > max(i, j, k), m > max(i, j, k). Since i < j < k < ` and i < j < k < m, both the
functions admit integer minimizers in the range [k, n]. Let

m = argmin
m∈[k+1,n]\J

(m− i)(m− j)
m− k

.

Then (A.10) is satisfied when the index ` = m where m must satisfy:

m− k =
(m− i)(m− j)

[(m− i) + (m− j)]

m = k ±
√

(k − i)(k − j)

= k +
√

(k − j)(k − i)

(A.11)

where the negative root is ignored since m > k. Since j = i + 1,
√

(k − j)(k − i) is
the geometric mean of two consecutive integers, m /∈ Z+. The function (m−i)(m−j)

m−k thus
admits two consecutive integer minimizers m1 and m2 as follows:

k − j <
√

(k − j)(k − i) < k − i

m1 = bmc = k +
⌊√

(k − j)(k − i)
⌋

= k + k − j = 2k − j

m2 = dme = k +
⌈√

(k − j)(k − i)
⌉

= k + k − i = 2k − i

(A.12)

where

m2 = m1 + 1,
(m2 − i)(m2 − j)

m2 − k
=

(m1 − i)(m1 − j)
m1 − k

.

Hence the index ` can assume two values m1, m2 at which (A.10) is satisfied.

From (A.8) and (A.12), the following two bases of type 1 which we shall call 1A and 1B
are dual feasible:

Basis type 1A: {i1, j1, `11} where `11 = 2k − j1 i1 = j1 − 1,
Basis type 1B: {i1, j1, `12} where `12 = 2k − i1, j1 = i1 + 1

(A.13)
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where we have added the suffix 1 to all indices to indicate that they belong to the type
1 basis. We observe that `12 = `11 + 1 and the structure of the feasible bases is such that
the indices {j1, k, `11} and {i1, k, `12} are in arithmetic progression.

B) Basis type 2: We now consider the second basis type ( i < k < j < `) from (A.6). The
corresponding cost vector c>B = [0, j − k, ` − k]. From (A.5), we have the determinant
inequality ∣∣∣∣∣∣∣∣∣∣

cm 0 j − k `− k

1 1 1 1

m i j `(
m
2

) (
i
2

) (
j
2

) (
`
2

)

∣∣∣∣∣∣∣∣∣∣
≤ 0, ∀m ∈ [n] \ J (A.14)

a) m ≤ k
If m ≤ k, then cm = 0 and from (A.14) we need

1
2 [(j − k)(i−m)(`−m)(`− i)
− (`− k)(i−m)(j −m)(j − i)] ≤ 0, ∀m ∈ [k] \ J

(i−m)

[
(`−m)(`− i)

`− k
− (j −m)(j − i)

j − k

]
≤ 0, ∀m ∈ [k] \ J

(A.15)

where [k] \ J is {1, .., i − 1, i + 1, ...k} since i < k and the indices j, ` satisfy ` > j > k.
Note that the sign of the left hand side of the inequality in (A.15) depends on the relative
position of i and m and hence we further partition the interval [k] \ J into two parts
[1, i− 1] and [i+ 1, k].

i) 1 ≤ m ≤ i− 1, i ≥ 1
If m ∈ [1, i − 1], then m < i < k and we need the square bracketed term in (A.15) to
be non-positive. Since ` > j > k ≥ m, a necessary condition for this non-positivity is
that ` > m and j < m should not occur simultaneously i.e. j < m < ` should not be
possible which means ` = j + 1. In addition we need

(`−m)(`− i)
`− k

≤ (j −m)(j − i)
j − k

, ∀m ∈ [1, i− 1] \ J

(j + 1−m)(j + 1− i)
j + 1− k

≤ (j −m)(j − i)
j − k

, ∀m ∈ [1, i− 1] \ J
(A.16)

where [1, i−1]\J = [1, i−1] since it contains no basic index. Since ` > j > max(i,m, k),
both (j−m)(j−i)

j−k and (`−m)(`−i)
`−k are piecewise linear convex in j and ` respectively. Ob-

serve that the functions in (A.10) were convex in ` and m for a given (i, j, k) triplet
(where i < j < k), while those in (A.20) are convex in j and ` for a given (i,m, k) triplet
for every m ∈ [1, i− 1]. The condition in (A.16) is satisfied if:

argmin
j>k

min
m∈[0,i−1]

(j + 1−m)(j + 1− i)
j + 1− k

≤ argmin
j>k

min
m∈[0,i−1]

(j −m)(j − i)
j − k

argmin
j>k

(j + 1− (i− 1))(j + 1− i)
j + 1− k

≤ argmin
j>k

(j − (i− 1))(j − i)
j − k

(A.17)
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Similar to the analysis in (A.12), the right hand side function in (A.17) admits two
minimizers:

k +
⌊√

(k − (i− 1))(k − i)
⌋

= 2k − i

k +
⌈√

(k − (i− 1))(k − i)
⌉

= 2k − i+ 1
(A.18)

that attain the same function value (where the negative root is ignored since j > k)
while the left hand side function admits the minimizers j = 2k − i− 1, 2k − i.

2k − i− 1 2k − i 2k − i+ 1

`∗ j∗

Minimizers (?) in terms of j for left and right hand side functions in (A.17), m < i

Thus, (A.17) will be satisfied for all j which satisfy:

j ≤ 2k − i (A.19)

where we choose the smaller of the two minimizers in (A.18) (involving the floor func-
tion) admitted by the right hand side function.
ii) i+ 1 ≤ m ≤ k, i < k
If m ∈ [i + 1, k], we enforce the necessary conditions for the square bracketed term in
(A.15) to be non-negative as follows:

(`−m)(`− i)
`− k

≥ (j −m)(j − i)
j − k

where j < `, ∀m ∈ [i+ 1, k] \ J (A.20)

where [i + 1, k] \ J = [i + 1, k] since it contains no basic index. The condition in (A.20)
is satisfied if:

argmin
j>k

max
m∈[i+1,k]

(j + 1−m)(j + 1− i)
j + 1− k

≥ argmin
j>k

max
m∈[i+1,k]

(j −m)(j − i)
j − k

argmin
j>k

(j + 1− (i+ 1))(j + 1− i)
j + 1− k

≥ argmin
j>k

(j − (i+ 1))(j − i)
j − k

(A.21)

Similar to the analysis in (A.12), the right hand side function in (A.21) admits two
minimizers:

k +
⌊√

(k − (i+ 1))(k − i)
⌋

= 2k − i− 1

k +
⌈√

(k − (i+ 1))(k − i)
⌉

= 2k − i
(A.22)

which attain the same function value (where the negative root is ignored since j > k)
while the left hand side function admits the minimizers j = 2k− i−2, 2k− i−1. Thus,

2k − i− 2 2k − i− 1 2k − i

`∗ j∗

Minimizers (?) in terms of j for left and right hand side functions in (A.21) m > i
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(A.21) will be satisfied for all j which satisfy:

j ≥ 2k − i− 1 (A.23)

where we choose the smaller of the two minimizers in (A.22) (involving the floor func-
tion) admitted by the right hand side function.

Combining both conditions in (A.19) and (A.23), we have:

2k − i− 1 ≤ j ≤ 2k − i

or 2k − j − 1 ≤ i ≤ 2k − j (A.24)

To demonstrate the derivation of the conditions in (A.24) for the basis type 2 when
m ≤ k, we consider a numerical example in Figure A.3 involving n = 30 variables with
k = 12 and a randomly chosen index i = 7 where i < k < j < ` < n. The index
value i which is part of a primal and dual feasible basis, depends on n, k, p as will be
shown in the later part of the proof (see A.41). For now, we assume that there exist
n, k, p, k ∈ [1, n − 1] such that i = 7. Figure A.3a considers the case when m < i and
plots the left and right hand side functions in (A.17) (where non-integer j have been
rounded off to the next highest integer when computing the function value) and shows
that the required condition is satisfied when j ≤ 2k−i = 17 while Figure A.3b plots the
same functions when m > i and shows that the required condition in (A.21) is satisfied
when j ≥ 2k− i− 1 = 16. Hence j = 16, 17 and corresponding i = 2k− j = 8, 7 satisfy
the necessary conditions in (A.24).
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FIGURE A.3: Plots of left and right hand side functions (A.16) with n = 30, k = 12, i = 7

However it is sufficient to consider j = 16, ` = 17 for the sake of the proof. In fact it can
be shown that considering j = 17, ` = 18 will lead to a primal infeasible basis but we
skip the proof here. Note that although i = 7 was our initial assumption, i = 8 is also
dual feasible for the same j = 16, ` = 17 indices as shown by the second inequality in
(A.24). Thus, when m < k, the basic index i ∈ {2k − j − 1, 2k − j} can assume two
consecutive integer values and along with ` = j + 1, the following two bases of type 2,
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which we shall call 2A and 2B are dual feasible:

Basis type 2A: {i21, j2, `2} where i21 = 2k − `2 j2 = `2 − 1

Basis type 2B: {i22, j2, `2} where i22 = 2k − j2, `2 = j2 + 1
(A.25)

where we have added the suffix 2 to all indices to indicate that they belong to the type
2 basis. We observe that i22 = i21 + 1 and the structure of the feasible bases is such that
the indices {`2, k, i21} and {j2, k, i22} are in arithmetic progression.

b) m > k

If m > k, then cm = m− k and from (A.14) we have the determinant inequality∣∣∣∣∣∣∣∣∣∣

m− k 0 j − k `− k

1 1 1 1

m i j `(
m
2

) (
i
2

) (
j
2

) (
`
2

)

∣∣∣∣∣∣∣∣∣∣
≤ 0, ∀m ∈ [k + 1, n] \ J (A.26)

We enforce the condition that `− j = 1 from the analysis for m ≤ k, since we need the
condition in (A.14) to be true for all m ∈ [n] \J . With some row and column operations
we can reduce the determinant in (A.26) to a simple expression as follows:
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1 1 1
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0 1 1

0 i k(
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2

)
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∣∣∣∣∣∣∣∣
= (k − i)[(j −m)(j +m− 1)/2− j(j −m)]

= (k − i)(j −m)(m− j − 1)/2

= (j −m)(m− `)(k − i)/2
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Hence, we need

(j −m)(m− `)(k − i) ≤ 0 ∀m ∈ [k + 1, n] \ J

or (m− j)(m− `) ≥ 0 ∀m ∈ [k + 1, n] \ J

where the last inequality is due to k > i and [k + 1, n] \ J is {k + 1, .., j − 1, j + 2, ...n}
since i < k and the indices j, ` satisfy k < j = `−1. The condition (m− j)(m− `) ≥ 0 is
satisfied for all m ∈ {k + 1, .., j − 1, j + 2, ...n} since we have j = `− 1 and thus (A.26)
is always satisfied when j, ` are consecutive integers.

A.1.2 Primal feasibility conditions

We are now left with the task of finding the conditions under which the dual feasible
bases in (A.13) and (A.25) are primal feasible and thus optimal. From the aggregated
linear program in (A.1), we have the primal feasibility conditions:

vi =
n(n− 1)p2 − np(j + `− 1) + j`

(i− j)(i− `)
≥ 0, vj =

n(n− 1)p2 − np(i+ `− 1) + i`

(j − i)(j − `)
≥ 0,

v` =
n(n− 1)p2 − np(i+ j − 1) + ij

(`− i)(`− j)
≥ 0

(A.27)
From Section 8.1 in Boros and Prékopa (1989), for basis type 1, vi1 ≥ 0 and vj1 ≥ 0
automatically imply that v` ≥ 0 (where ` = `11 or `12) and thus to ensure primal
feasibility with i1 < j1 < `, we only need to satisfy:

n(n− 1)p2 + np(1− j1 − `) + j1` ≥ 0,

n(n− 1)p2 + np(1− i1 − `) + i1` ≤ 0
(A.28)

Similarly for basis type 2, vj2 ≥ 0 and v`2 ≥ 0 automatically imply that vi ≥ 0 (where
i = i21 or i22) and thus to ensure primal feasibility with i < j2 < `2, we only need to
satisfy:

n(n− 1)p2 + np(1− i− `2) + i`2 ≥ 0,

n(n− 1)p2 + np(1− i− j2) + ij2 ≥ 0,
(A.29)

a) Basis type 1: We first address the primal feasibility of the basis type 1A with ` =
`11 = 2k − j1, i1 = j1 − 1. Solving the equations in (A.28) leads to the following four
conditions:

`1 ≥ k −
√

(k − np)2 + np(1− p) and `1 ≤ k +
√

(k − np)2 + np(1− p)

`1 ≤ k − 1
2 −

√
(k − 1

2 − np)2 + np(1− p) or `1 ≥ k − 1
2 +

√
(k − 1

2 − np)2 + np(1− p)
(A.30)

However, since `1 > k , the left hand side inequalities in the two conditions of (A.30)
can be eliminated and thus (A.30) reduces to:

k − 1/2 +
√

(k − 1/2− np)2 + np(1− p) ≤ `11 ≤ k +
√

(k − np)2 + np(1− p) (A.31)
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By similarly assuming that ` = `12 = 2k−i1, j1 = i1 +1 from basis type 1B and solving
(A.28) with `1 > k leads to:

k +
√

(k − np)2 + np(1− p) ≤ `12 ≤ k + 1/2 +
√

(k + 1/2− np)2 + np(1− p) (A.32)

(A.31) and (A.32) can be summarized as :

β1 ≤ `11 ≤ β2

β2 ≤ `12 ≤ β3

(A.33)

where the parameters β1, β2, β3 are

β1(n, k, p) = k − 1/2 +
√

(k − 1/2− µ)2 + σ2, β2(n, k, p) = k +
√

(k − µ)2 + σ2,

β3(n, k, p) = k + 1/2 +
√

(k + 1/2− µ)2 + σ2

(A.34)

where µ = np and σ2 = np(1 − p) are the mean and variance of the sum of n identical
pairwise independent variables.

b) Basis type 2: A similar analysis for basis types 2A with i21 = 2k − `2, j2 = `2 − 1
and 2B with i22 = 2k − j2, `2 = j2 + 1 and the conditions in (A.29) leads to:

k − 1/2−
√

(k − 1/2− np)2 + np(1− p) ≤ i21 ≤ k −
√

(k − np)2 + np(1− p)

k −
√

(k − np)2 + np(1− p) ≤ i22 ≤ k + 1/2−
√

(k + 1/2− np)2 + np(1− p)

or
γ1 ≤ i21 ≤ γ2

γ2 ≤ i22 ≤ γ3

(A.35)

where the parameters γ1, γ2, γ3 are

γ1(n, k, p) = k − 1/2−
√

(k − 1/2− µ)2 + σ2, γ2(n, k, p) = k −
√

(k − µ)2 + σ2,

γ3(n, k, p) = k + 1/2−
√

(k + 1/2− µ)2 + σ2

(A.36)

Henceforward, we drop (n, k, p) while referring to the parameters βi, γi, i ∈ [3] for
notational convenience.

Observations: For any given (n, k, p) triplet where n ≥ 3, p ∈ (0, 1) and k ∈ [n], we
observe that the following conditions are satisfied by the parameters βi, γi, i ∈ [3] in
(A.34) and (A.36) using elementary algebra:

i) γ1 < γ2 < γ3 < β1 < β2 < β3
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ii) 0 < β2 − β1 < 1, 0 < β3 − β2 < 1, 0 < β3 − β1 < 2,

0 < γ3 − γ2 < 1, 0 < γ2 − γ1 < 1, 0 < γ3 − γ1 < 2
(A.37)

iii) γ1 + β1 = 2k − 1, γ2 + β2 = 2k, γ3 + β3 = 2k + 1 (A.38)

Using the structure of the type 1 dual feasible basis from (A.13) and the β values
from (A.34), we delineate the exact index values of the type 1 bases as follows:

Basis type 1A Basis type 1B

`11 = bβ2c = k +
⌊√

(k − µ)2 + σ2
⌋

j1 = 2k − `11 = k −
⌊√

(k − µ)2 + σ2
⌋

i1 = j1 − 1 = k −
⌈√

(k − µ)2 + σ2
⌉

`12 = dβ2e = k +
⌈√

(k − µ)2 + σ2
⌉

i1 = 2k − `12 = k −
⌈√

(k − µ)2 + σ2
⌉

j1 = i2 + 1 = k −
⌊√

(k − µ)2 + σ2
⌋

(A.39)

TABLE A.1: Indices of basis type 1 whose primal feasibility depends on n, k, p values

Note that the i1, j1 indices are identical in both the bases 1A, 1B in (A.39). While the
dual feasibility of both type 1 bases in (A.39) is guaranteed, their primal feasibility
depends on the relative position of β1, β2, β3 as discussed next. From (A.37), at most
two integers can lie between β1 and β3 and the following four mutually exclusive and
exhaustive conditions are possible:

(i) dβ1e = bβ2c and dβ2e = bβ3c,

(ii) dβ1e = bβ2c = bβ3c,

(iii) dβ1e = dβ2e = bβ3c,

(iv) bβ1c = bβ2c = bβ3c

(A.40)

Further, exactly one of the four conditions in (A.40) must be true for any given (n, k, p)
triplet. Considering the primal feasibility conditions in (A.33), if case (i) occurs, both
`11 = bβ2c and `12 = dβ2e admit integer solutions i.e. both bases 1A, 1B are primal and
dual feasible. If case (ii) occurs, only `11 admits a valid integral solution (only basis 1A
is primal and dual feasible) while if case (iii) occurs, only `12 admits a valid integral
solution (only basis 1B is primal and dual feasible). Lastly, if case (iv) occurs, both
`11 and `12 do not admit integral solutions and neither basis 1A nor 1B can be primal
feasible. In other words, unless

x < β1 < β2 < β3 < x+ 1,

for some x ∈ Z+, at least one of `11 or `12 will have a valid integral solution and at least
one of the bases 1A, 1B will be primal and dual feasible. Next, using the structure of
the type 2 dual feasible basis from (A.25) and the γ values from (A.36), we delineate the
exact index values of the type 2 bases as follows:
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Basis type 2A Basis type 2B

i21 = bγ2c = k −
⌈√

(k − µ)2 + σ2
⌉

`2 = 2k − i21 = k +
⌈√

(k − µ)2 + σ2
⌉

j2 = `1 − 1 = k +
⌊√

(k − µ)2 + σ2
⌋

i22 = dγ2e = k −
⌊√

(k − µ)2 + σ2
⌋

j2 = 2k − i22 = k +
⌊√

(k − µ)2 + σ2
⌋

`2 = j2 + 1 = k +
⌈√

(k − µ)2 + σ2
⌉

(A.41)

TABLE A.2: Indices of basis type 2 whose primal feasibility depends on n, k, p values

Note that the j2, `2 indices are identical in both the bases 2A, 2B in (A.41). Similar to
the analysis for the type 1 bases, unless

x < γ1 < γ2 < γ3 < x+ 1,

for some x ∈ Z+, at least one of i21 or i22 has a valid integral solution and at least
one of the bases 2A, 2B will be primal and dual feasible. If bβ1c = bβ2c = bβ3c and
bγ1c = bγ2c = bγ3c (case (iv)), none of the four bases 1A, 1B, 2A, 2B will be primal
feasible. However, as we will prove in Lemma 25 later, the above conditions are not si-
multaneously possible and thus at least one of the four bases will always remain primal
and dual feasible for any k ∈ [n]. It is also interesting to note that:

j2 = `11 = bβ2c = k +
⌊√

(k − np)2 + np(1− p)
⌋

j1 = i22 = dγ2e = k −
⌊√

(k − np)2 + np(1− p)
⌋

j1 + j2 = `11 + i22 = `12 + i21 = 2k

Exclusion of k from dual feasible bases:
It is clear from (A.35) and (A.41) that the basic indices of either type 1 or type 2 can
never include k since:

(k − µ)2 + σ2 6= 0, ∀p ∈ (0, 1), ∀k ∈ [n]

Thus, unlike with the extremal distribution for the non-trivial probability bound in
cases (b) and (c) (2.31-2.32), where k was part of the basis, the expectation problem
does not admit any feasible basis with the index k.

Degeneracy:
It is possible that the parameters βi, γi, i ∈ [3] could assume integer values and this can
only happen in pairs due to the complementary property in (A.38). In this situation,
one or more of the primal decision variables in (A.27) would be zero since βi, γi, i ∈ [3]
are the roots of the numerators. This leads to degeneracy, the analysis of which is be-
yond the scope of this proof. Specifically, if β2, γ2 ∈ Z+, then `11 = `12 = ` from (A.39)
and i21 = i22 = i from (A.41). In this situation, the indices i1, j1 and j2, `2 of basis type 1
and 2 respectively can still be arranged to satisfy the consecutive integer requirements
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as follows:

Basis type 1A: {i1, j1, `} where j1 = 2k − ` i1 = j1 − 1,
Basis type 1B: {i1, j1, `} where i1 = 2k − ` j1 = i1 + 1,
Basis type 2A: {i, j2, `2} where j2 = 2k − i `2 = j2 + 1,
Basis type 2B: {i, j2, `2} where `2 = 2k − i j2 = `2 − 1,

and all the bases above can be shown to be dual feasible. For example, consider n =
4, k = 2, p = 1/2, then

β2 = k +
√

(k − np)2 + np(1− p) = 3, `11 = `12 = 3

and {0, 1, 3}, {1, 2, 3} are possible type 1 bases while {1, 2, 3}, {1, 3, 4} are possible type
2 bases. However, if β1, γ1 ∈ Z+ and/or β3, γ3 ∈ Z+, the indices in (A.39) and (A.41) can
be used without modification.

Truncation of bases:
Considering the basis type 1, when k ≥ n/2, it is possible that i1 < j1 < 2k − n and
thus from (A.39), `12 > `11 = 2k − j1 > n which is an infeasible index. However, since
the function (`−i)(`−j)

`−k is convex in `, truncating the index `11 to n will not affect the
dual feasibility conditions in (A.10). However, the other two indices j1, i1 will need to
be recomputed by solving for the primal feasibility conditions in (A.28) with ` = n as
follows:

j1 =

⌈
np
(
(`− 1)− (n− 1)p

)
`− np

⌉
= d(n− 1)pe , i1 = j1 − 1.

Similarly considering the basis type 2, when k < n/2, it is possible that `2 > j2 > 2k
and thus from (A.41), i21 < i22 = 2k − j2 < 0 which is an infeasible index. In this case
truncating the index i22 to zero will not affect the dual feasibility conditions in (A.20)
and (A.16). The other two indices j2, i2 will need to be recomputed by solving for the
primal feasibility conditions in (A.29) with i = 0 as follows:

j2 =

⌊
np
(
(i− 1)− (n− 1)p

)
i− np

⌋
= b1 + (n− 1)pc = d(n− 1)pe , `2 = j2 + 1.

We thus have the following two possible primal and dual feasible truncated bases,
which we shall call 1C and 2C respectively:

Truncated Basis 1C : i31 = j31 − 1, j31 = d(n− 1)pe , `31 = n
Truncated Basis 2C : i32 = 0, j32 = d(n− 1)pe , `32 = j32 + 1

(A.42)

where we have added the suffix 3 to all indices to indicate that they belong to the
truncated type 1 and type 2 bases.

Lemma 25. At least one of the non-truncated bases 1A, 1B, 1C will be primal and dual feasible
if k ≥ np while at least one of the non-truncated bases 2A, 2B, 2C will be primal and dual
feasible if k < np.
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Proof. The proof rests on the fact that
β2 − β1 > 1/2,
β3 − β2 > 1/2,
β3 − β1 > 1,

if k ≥ np and


γ3 − γ2 > 1/2,
γ2 − γ1 > 1/2,
γ3 − γ1 > 1

if k < np (A.43)

which is straightforward to verify from the definitions of βi, γi i ∈ [3] in (A.34) and
(A.36). Thus when k ≥ np, it is not possible that x < β1 < β2 < β3 < x + 1, for some
x ∈ Z+, thus guaranteeing the primal and dual feasibility of at least one of the bases
1A, 1B, while if k < np, y < β1 < β2 < β3 < y + 1, for some y ∈ Z+ is not possible
thus guaranteeing the primal and dual feasibility of at least one of the bases 2A, 2B.
However, the non-truncated bases will not always admit valid indices as seen earlier.
It is easy to observe from (A.39) and (A.35) that

`11 = k +
⌊√

(k − µ)2 + σ2
⌋
≥ n iff k > (n+ (n− 1)p)/2

i22 = k −
⌊√

(k − µ)2 + σ2
⌋
≤ 0 iff k < (1 + (n− 1)p)/2.

(A.44)

and thus only the truncated bases 1C and 2C are primal and dual feasible in these re-
gions respectively, while from (A.43), at least one of the four other bases 1A, 1B, 2A, 2B
will be feasible when

(1 + (n− 1)p)/2 ≤ k ≤ (n+ (n− 1)p)/2.

A.1.3 Optimality of bases

We next complete the proof by showing that the objective function values of the aggre-
gated primal linear program (A.1) attained by the four non-truncated bases 1A, 1B, 2A, 2B
in (A.39) and (A.41) are equal to each other and that of the corresponding dual linear
program and hence optimal whenever at least one of them is feasible. Consider the
non-truncated bases 1A,1B,2A,2B as described above. Denote by EP (1A), EP (1B),
EP (2A), EP (2B) the expectation objective of the primal linear program (A.1) attained
by the respective bases and let ED(1A), ED(1B), ED(2A), ED(2B) be the correspond-
ing objective function values of the dual linear program:

E(n, k, p) = min α+ βµ+ γn(n− 1)p2/2

α+ iβ + i(i− 1)/2γ >= (i− k)+, ∀i ∈ [0, n]

α, β, γ free

(A.45)

Lemma 26. For any k ∈ [(1 + (n − 1)p)/2, (n + (n − 1)p)/2], where p ∈ (0, 1), the eight
objective function values

EP (1A), EP (1B), EP (2A), EP (2B), ED(1A), ED(1B), ED(2A), ED(2B)

attained by the non-truncated bases are equal to each other irrespective of which basis (bases)
is (are) feasible and hence the particular basis (bases) which is (are) feasible for a given k is
(are) also optimal. Similarly, the truncated bases 1C and 2C are also optimal when k < (1 +
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(n− 1)p)/2 and k > (n+ (n− 1)p)/2 respectively since their objective function values satisfy
EP (1C) = ED(1C) and EP (2C) = ED(2C) in the specified range of k.

EP (1A) = EP (1B)

EP (2A) = EP (2B) ED(2A) = ED(2B)

ED(1A) = ED(1B)

FIGURE A.4: Equality of primal and dual objective function values for non-truncated
bases

Proof. From (A.1), the objective function values for the four bases are:

EP (1A) = (`11 − k)V`11 , EP (1B) = (`12 − k)V`12

EP (2A) = np− k − (i21 − k)Vi11 EP (2B) = np− k − (i22 − k)Vi22

(A.46)

To prove that EP (1A) = EP (1B) , we recall from in (A.39) that i1, j1 indices are identi-
cal when ` = `11 and ` = `12 and the objective function value

EP (1A) = (`11 − k)V`11

=
(`11 − k)

(`11 − i1)(`11 − j1)
[n(n− 1)p2 − np(i1 + j1 − 1) + i1j1]

=
(`12 − k)

(`12 − i2)(`12 − j2)
[n(n− 1)p2 − np(i1 + j1 − 1) + i2j2]

= EP (1B)

(A.47)

remains unchanged since (`12−i)(`12−j)
`12−k = (`11−i)(`11−j)

`11−k . Equality of EP (2A) and EP (2B)
can be similarly proved from (A.35) and (A.46).
To prove thatEP (1A) = ED(1A), consider the following dual feasible solution to (A.45)
which attains the objective EP (1A):

α =
i1(i1 + 1)

2(`11 − i1)
β = − i1

(`11 − i1)
, γ =

1

2(`11 − i1)
(A.48)
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and thus

ED(1A) = α+ βnp+ γn(n− 1)p2/2

=
n(n− 1)p2 − 2i1np+ i1(i1 + 1)

2(`11 − i1)

=

(
1

2

)
n(n− 1)p2 + (1− i1 − j1)np+ i1j1

(`11 − i1)

=

(
`11 − k
`11 − j1

)
[n(n− 1)p2 + np(1− i1 − j1) + i1j1]

(`11 − i1)

= EP (1A)

(A.49)

where the third and fourth equalities are due to j1 = i1 + 1 and (`11−k)
(`11−j1) = (2k−j1−k)

(2k−j1−j1) =

1/2 respectively and the last equality is due to (A.47). Then using j1 from left hand
column of (A.39) along with i1 = j1 − 1 and dropping the subscript 1, we derive the
second part (case (b)) of the tight bound in Theorem 7 as:

EP (1A) =
n(n− 1)p2 + (j − 1)(j − 2np)

2(2(k − j) + 1)
,

1 + (n− 1)p

2
≤ k ≤ n+ (n− 1)p

2
,

j = k −
⌊√

(k − np)2 + np(1− p)
⌋ (A.50)

To prove thatEP (2A) = ED(2A), consider the following dual feasible solution to (A.45)
which attains the objective EP (2A):

α =
i21(i21 + 1)

2(j2 − i21)
β =

i21

(i21 − j2)
, γ =

1

2(j2 − i21)
(A.51)

and it can be easily shown that

ED(2A) = α+ βnp+ γn(n− 1)p2/2

=
1

2

n(n− 1)p2 − 2i21np+ i21(i21 + 1)

(j2 − i21)

= np− k −
(

1

2

)(
n(n− 1)p2 − np(j2 + `2 − 1) + j2`2

(i21 − j2)

)
= np− k −

(
i21 − k
i21 − `2

)(
n(n− 1)p2 − np(j2 + `2 − 1) + j2`2

(i21 − j2)

)
= np− k − (i21 − k)Vi21

= EP (2A)

where the fourth equality is due to (i21−k)
(i21−`2) = (i21−k)

(i21−(2k−i21)) = 1/2 and the fifth equality
follows from the primal variables in (A.27). Then using i21 from the left hand column
of (A.41) along with j2 = 2k − i21 − 1 and dropping the subscript 21, we once again
derive the second part of the tight bound in Theorem 7 as:
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EP (2A) =
[n(n− 1)p2 − 2inp+ i(i+ 1)]

2(2k − 2i− 1)
where i = k −

⌈√
(k − np)2 + np(1− p)

⌉
(A.52)

where the closed form in (A.52) can be easily shown to be equivalent to the closed form
in (A.50) by the transformation i = j− 1 thus proving that EP (1A) = EP (2A). The rest
of the equivalences in Figure A.4 are proved by transitive relationships and we have
thus proved that the non-truncated basic indices 1A, 1B, 2A, 2B from (A.39) and (A.41)
achieve the optimal bound irrespective of their feasibility.
It can be independently verified that the truncated basis 1C and 2C indices from (A.42)
are also optimal in their respective domains by proving that they attain the third (case
(c)) and first (case (a)) parts of the tight bound in Theorem 7 as:

EP (1C) = ED(1C) =
(n− k)

[
n(n− 1)p2 + (j − 1)(j − 2np)

](
(n− j)2 + (n− j)

) , k > (n+ (n− 1)p)/2, case (c)

EP (2C) = ED(2C) = np

[
1− k

(
2j − (n− 1)p

j(j + 1)

)]
, k < (1 + (n− 1)p)/2, case (a)

where j = d(n− 1)pe.

Thus we have proved the tight upper bound E(n, k, p) in Theorem 7 is always attained
by one of the non-truncated or truncated bases depending on the value of k and the
proof is thus completed.

A.2 Extremal distributions

We next provide six different extremal distributions that attain the tight upper bound
E(n, k, p) under different conditions on k and the relative position of the parameters
βi, γi, i ∈ [3]. Before that, we prove the following lemma (which is a stronger version
of Lemma 25) by identifying more detailed conditions under which the non-truncated
and truncated bases become optimal. These conditions are then used to delineate the
extremal distribution(s) for different values of k.

Lemma 27. For any given (n, k, p) triplet, where n ≥ 3, p ∈ (0, 1) and k ∈ [(1 + (n −
1)p)/2, (n + (n − 1)p)/2], at least two of the four non-truncated bases 1A,1B,2A,2B must
be optimal. If all the four bases are non-degenerate, exactly two of the four bases 1A,1B,2A,2B
must be optimal.

Proof. From the complementary conditions in (A.38), it is straightforward to observe
that when all four bases are non-degenerate i.e. βi, γi /∈ Z+, ∀i ∈ [3] the four mutually
exclusive conditions on βi, i ∈ [3] delineated in (A.40) are equivalent to the following
conditions on γi, i ∈ [3] :

(i) dβ1e = bβ2c and dβ2e = bβ3c ≡ bγ1c = bγ2c = bγ3c,

(ii) dβ1e = bβ2c = bβ3c ≡ dγ1e = dγ2e = bγ3c,

(iii) dβ1e = dβ2e = bβ3c ≡ dγ1e = bγ2c = bγ3c

(iv) bβ1c = bβ2c = bβ3c ≡ dγ1e = bγ2c and dγ2e = bγ3c

(A.53)
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From the primal feasibility conditions in (A.33) and (A.35) and the equivalence of
conditions in (A.53), it is then straightforward to see that under assumptions of non-
degeneracy of all four bases, exactly two non-truncated bases would be optimal for any
k ∈ [(1 + (n− 1)p)/2, (n+ (n− 1)p)/2] as shown in Table A.3.

Scenario Relative Position of
βi, γi, i ∈ [3]

Type 1 basis Type 2 basis

1A 1B 2A 2B

1
dβ1e = bβ2c anddβ2e = bβ3c

and/or

bγ1c = bγ2c = bγ3c

X X

2
dβ1e = bβ2c = bβ3c

and/or

dγ1e = dγ2e = bγ3c

X X

3
dβ1e = dβ2e = bβ3c

and/or

dγ1e = bγ2c = bγ3c

X X

4
bβ1c = bβ2c = bβ3c

and/or

dγ1e = bγ2c anddγ2e = bγ3c

X X

TABLE A.3: Optimality of type 1 and 2 non-truncated bases in different scenarios

If at least one of the non-truncated bases are degenerate, the equivalence of conditions
in (A.53) may break down as seen in the following example:
Suppose n = 3, k = 3, p = 1/3, then:

β1 = 4, β2 = 4.41, β3 = 5
γ1 = 1, γ2 = 1.59, γ3 = 2

(A.54)

and hence conditions (i) and (iv) in (A.53) are violated. However

dβ1e = bβ2c, dγ1e = bγ2c and dβ2e = bβ3c, dγ2e = bγ3c

are still satisfied due to which all four non-truncated bases will be optimal. However,
even with the breakdown of the equivalence in (A.53), exactly one of the four condi-
tions for both βi and γi must be true for any given (n, k, p) triplet. Hence, even with
degeneracy, at least two non-truncated bases will always be optimal.

It can be observed that the truncated bases 1C, 2C from (A.42) are simultaneously
degenerate in their respective range of k values iff (n − 1)p ∈ Z+ and degeneracy
among truncated bases can only occur simultaneously. Unlike the non-truncated bases,
degeneracy does not impact the feasibility of the truncated bases and thus only the
following two scenarios are possible:
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Scenario Range of k 1C 2C

5 k <
1 + (n− 1)p

2
X X

6 k >
n+ (n− 1)p

2
X X

TABLE A.4: Feasibility of type 1 and 2 truncated bases in different scenarios

Similar to the proof for the probability objective in Theorem 4, we distribute the ag-
gregated probability mass v` = P(

∑n
j=1 c̃j = `), ` ∈ [0, n], equally, among all scenarios

C with exactly ` ones as follows:

P(C) = v`/
(
n
`

)
, ∀C :

∑n
t=1 ct = `, ∀` ∈ [0, n] where

∣∣C :
∑n

t=1 ct = `
∣∣ =

(
n
`

)
It is then straightforward to verify that the following distributions attain the bounds for
each of the cases (a)− (c) in the statement of Theorem 7 for the specific valid scenarios
from Tables A.3 and A.4 for a given (n, k, p) triplet.

I) Case (a), Basis type 1C of the form {j − 1, j, n}, Scenario 5

P(c) =



n(n− 1)p2 + (j − 1)(j − 2np)

(n− j)2 + (n− j)
, if

n∑
t=1

ct = j − 1,

(1− p)(1 + (n− 1)p− j)(
n−1
j

) , if
n∑
t=1

ct = j,

n(n− 1)p2 + (j − 1)(j − 2np)

(n− j)2 + (n− j)
, if

n∑
t=1

ct = n,

where j = d(n − 1)pe < k < (1 + (n − 1)p)/2 and all other support points have zero
probability.

II) Case (b), (1 + (n− 1)p)/2 ≤ k ≤ (n+ (n− 1)p)/2

i) Basis type 1A of the form {j − 1, j, 2k − j}, Scenarios 1, 2

P(c) =



n(n− 1)p2 − (2k − 1)np+ j(2k − j)
[2(k − j) + 1]

(
n
j−1

) , if
n∑
t=1

ct = j − 1,

2(k − 1)np− n(n− 1)p2 − (j − 1)(2k − j)
2(k − j)

(
n
j

) , if
n∑
t=1

ct = j,

n(n− 1)p2 + (j − 1)(j − 2np)

2(k − j)[(2(k − j) + 1]
(

n
2k−j

) , if
n∑
t=1

ct = 2k − j,
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where j = k − b
√

(k − np)2 + np(1− p)c < k and all other support points have zero
probability.

ii) Basis type 1B of the form {j − 1, j, 2k − j + 1}, Scenarios 1, 2

P(c) =



n(n− 1)p2 − 2knp+ j(2k − j + 1)

[2(k − j) + 2]
(
n
j−1

) , if
n∑
t=1

ct = j − 1,

(2k − 1)np− n(n− 1)p2 − (j − 1)(2k − j + 1)

[2(k − j) + 1]
(
n
j

) , if
n∑
t=1

ct = j,

n(n− 1)p2 + (j − 1)(j − 2np)

2(k − j + 1)[(2(k − j) + 1]
(

n
2k−j+1

) , if
n∑
t=1

ct = 2k − j + 1,

where j = k − b
√

(k − np)2 + np(1− p)c < k and all other support points have zero
probability.

iii) Basis type 2A of the form {2k − j − 1, j, j + 1}, Scenarios 3, 4

P(c) =



n(n− 1)p2 + j(j + 1− 2np)

2(j − k + 1)[2(j − k) + 1]
(

n
2k−j−1

) , if
n∑
t=1

ct = 2k − j − 1,

(2k − 1)np− n(n− 1)p2 − (j + 1)(2k − j − 1)

[2(j − k)− 1]
(
n
j

) , if
n∑
t=1

ct = j,

n(n− 1)p2 − 2(k − 1)np+ j(2k − j − 1)

2(j − k + 1)
(
n
j+1

) , if
n∑
t=1

ct = j + 1,

where j = k + b
√

(k − np)2 + np(1− p)c > k and all other support points have zero
probability.

iv) Basis type 2B of the form {2k − j, j, j + 1}, Scenarios 2, 4

P(c) =



n(n− 1)p2 + j(j + 1− 2np)

2(j − k)[2(j − k) + 1]
(

n
2k−j

) , if
n∑
t=1

ct = 2k − j,

2knp− n(n− 1)p2 − (j + 1)(2k − j)
2(j − k)

(
n
j

) , if
n∑
t=1

ct = j,

n(n− 1)p2 − (2k − 1)np+ j(2k − j)
[(2(j − k) + 1]

(
n
j+1

) , if
n∑
t=1

ct = j + 1,

where j = k + b
√

(k − np)2 + np(1− p)c > k and all other support points have zero
probability.
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III) Case (c), Basis type 2C of the form {0, j, j + 1}, Scenario 6

P(c) =



n(n− 1)p2 + j(j + 1− 2np)

j(j + 1)
, if

n∑
t=1

ct = 0,

p(j − (n− 1)p)(
n−1
j−1

) , if
n∑
t=1

ct = j,

p(1 + (n− 1)p− j)(
n−1
j

) , if
n∑
t=1

ct = j + 1,

where j = d(n − 1)pe > k > (n + (n − 1)p)/2 and all other support points have zero
probability.
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