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Abstract

A collection of n random events is said to be (n − 1)-wise independent if any n − 1 events among them are mutu-
ally independent. We characterise all probability measures with respect to which n random events are (n − 1)-wise
independent. We provide sharp upper and lower bounds on the probability that at least k out of n events with given
marginal probabilities occur over these probability measures. The bounds are shown to be computable in polynomial
time.

Keywords: (n− 1)-wise independence, mutual independence, probability bounds, Bonferroni bounds, probabilistic
method
2020 MSC: 60E05

1. Introduction

Let Ω = {ωJ : J ⊆ [n]} be the sample space freely gen-
erated by n random events A1, . . . , An, so that {ωJ} =⋂

j∈J Aj ∩
⋂

j<J Aj =: AJ for all subsets J ⊆ [n]. Here, as
usual, for any integer n ≥ 0, let [n] := {1, . . . , n}, let ⊆
(resp. ⊂) denote the subset (resp. proper subset) relation,
let A denote the complement of A and let |J| denote the
cardinality of a set J. With Σ as the σ-algebra of all sub-
sets of Ω, the unique probability measure P on the mea-
surable space (Ω, Σ) with respect to which A1, . . . , An are
mutually independent and whose marginal probabilities
are P(Aj) =: aj for all j ∈ [n] is given by:

P(AJ) = ∏
j∈J

aj ×∏
j<J

(1− aj) =: aJ , for all J ⊆ [n]. (1.1)

We may relax the condition that the n events are mu-
tually independent to require only that every (n − 1)
events among A1, . . . , An are mutually independent. This
weaker condition is sometimes known as (n− 1)-wise in-
dependence. It is known that (n − 1)-wise independence
does not imply that the n events are mutually indepen-
dent in general (see [19, 20] for counterexamples), al-
though the converse is true. Comparisons of various no-
tions of independence and dependence for random vari-
ables can be found in the literature [6, 11, 17, 21]. The
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special case of Bernoulli random variables correspond to
the setting of random events in this paper.

Bernstein [6, p. 126] constructed his classic example of
n = 3 pairwise independent events which are not mu-
tually independent. The example in [19] generalizes his
construction to n ≥ 3 random events that are (n− 1)-wise
independent but not mutually independent. We discuss
this construction next.

Example 1 (Construction of (n − 1)-wise independent
events). Let aj = 1/2 for all j ∈ [n] where A1, . . . , An−1
are mutually independent events and suppose that the
event An occurs given that an even number of events
among A1, . . . , An−1 occur. It can be verified that these
n events are (n − 1)-wise independent but not mutually
independent.

The induced probability measure is not the unique one
with respect to which A1, . . . , An are (n − 1)-wise inde-
pendent but not mutually independent. For example, if
we suppose instead that An occurs given that an odd
number of events among A1, . . . , An−1 occur, we obtain
a distinct probability measure.

Overview

In Section 2, we characterize all probability measures
with respect to which n random events are (n − 1)-wise
independent (Theorem 9). Now we briefly outline the
steps leading to Theorem 9. First, in Proposition 2, we
identify a system of 2n − 1 equations linear in P(AI) for
all I ⊆ [n] that is satisfied if and only if A1, . . . , An are
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(n − 1)-wise independent. We then relax the condition
that P(AI) are nonnegative and show in Lemma 3 and
Corollary 4 that the solutions are parameterized by a sin-
gle real parameter. Reimposing the condition that P(AI)

are nonnegative forces this parameter to lie within a com-
pact interval which is identified in (2.6). Lemmas 6–8 then
explicitly identifies the endpoints of this interval in terms
of the marginal probabilities. Theorem 9 then follows.

Section 3 applies Theorem 9 to identify sharp bounds
on the probability that at least k out of n events which
are (n− 1)-wise independent occurs (Theorem 13) while
Theorem 14 shows that these bounds are computable in
polynomial time.

Examples 16 and 17 in Section 4 give cases when the
newly derived bounds are instances of known universal
bounds such as the classical Bonferroni bounds. Exam-
ple 18 illustrates the connection of the results to the prob-
abilistic method which provides conditions for the non-
occurrence of “bad” events when events are mostly in-
dependent. Example 19 illustrates the usefulness of the
bounds in providing robust estimates when mutual inde-
pendence breaks down or when existing bounds are not
sharp.

2. Characterization of (n − 1)-wise independence

Proposition 2. A collection of n random events A1, . . . , An is
(n − 1)-wise independent with P(Aj) = aj for all j ∈ [n] if
and only if:

∑
I⊇J

P(AI) = ∏
j∈J

aj, for all J ⊂ [n]. (2.1)

Proof. Since the AI ’s are mutually exclusive, we have
∑I⊇J P(AI) = P(

⋂
j∈J Aj) for any J. Thus (2.1) is equiva-

lent to
P(
⋂
j∈J

Aj) = ∏
j∈J

aj, for all J ⊂ [n],

which is in turn equivalent to the (n− 1)-wise indepen-
dence of A1, . . . , An.

The system of linear equations in (2.1) is inhomoge-
neous with (1.1) as a particular solution.

Lemma 3. The general solution of the system of linear equa-
tions:

∑
I⊃J

P(AI) = 0, for all J ⊂ [n], (2.2)

in the 2n variables {P(AJ)}J⊆[n] (not necessarily nonnega-
tive), is given by P(AJ) = (−1)|J|s, where s ∈ R is a free
parameter.

Proof. The following inhomogeneous linear system has a
unique solution, namely the mutually independent prob-
ability measure in (1.1):

∑
I⊇J

P(AI) = ∏
j∈J

aj, for all J ⊆ [n].

Hence the square coefficient matrix of its associated ho-
mogeneous linear system is invertible. Thus, the equa-
tions of the homogeneous subsystem (2.2) are linearly in-
dependent. Therefore its solution space has dimension 1,
because there are 2n − 1 equations and 2n variables. But,
substituting P(AI) = (−1)|I|s into (2.2), where s ∈ R is a
parameter, we have for any J ⊂ [n]:

∑
I⊃J

(−1)|I|s = s
n

∑
q=|J|

(
n− |J|
q− |J|

)
(−1)q

= s(−1)|J|
n

∑
q=|J|

(
n− |J|
q− |J|

)
(−1)q−|J|

= s(−1)|J|(1− 1)n−|J|

= 0,

where we use the Binomial Theorem in the third equality
and the fact that n − |J| > 0 for all J ⊂ [n] in the last
equality. Thus P(AJ) = (−1)|J|s.

Recall that a measure P is unitary if P(Ω) = 1.

Corollary 4. Every unitary measure P (not necessarily non-
negative) on (Ω, Σ) with P(Aj) = aj for all j ∈ [n] and with
respect to which A1, . . . , An are (n− 1)-wise independent has
the form:

P(AJ) = aJ + (−1)|J|s, for all J ⊆ [n], (2.3)

for some scalar parameter s ∈ R.

Proof. Add the particular solution P(AJ) = aJ (when the
collection of events {A1, . . . , An} is mutually indepen-
dent) with the general solution of the associated homoge-
nous linear system given in the previous lemma.

To characterise when P in (2.3) is a valid probability mea-
sure, we have to ensure that the following 2n nonnegativ-
ity conditions are satisfied:

P(AJ) = aJ + (−1)|J|s ≥ 0, for all J ⊆ [n]. (2.4)

Simplifying, this system gives:{
s ≥ −aJ , for all J ⊆ [n] : |J| is even,

s ≤ aJ , for all J ⊆ [n] : |J| is odd.
(2.5)

Therefore it is a valid probability measure for all values
of s that satisfy:

− min
J⊆[n]: |J| is even

aJ ≤ s ≤ min
J⊆[n]: |J| is odd

aJ . (2.6)
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From this point onwards, we make the following assump-
tion.

Assumption 5. The events are ordered by nondecreasing
value of their marginal probabilities, i.e. a1 ≤ · · · ≤ an.

The next lemma provides a lower bound on aJ for any
set J ⊆ [n], which will be used to establish the precise
interval for the parameter s in (2.6) and thus to identify
all probability measures with respect to which A1, . . . , An
are (n− 1)-wise independent.

Lemma 6. aJ ≥ a[|J|] for all J ⊆ [n].

Proof. Use the notation J � I to denote aJ ≥ aI . Say
|J| = `. We need to show that J � [`] = {1, . . . , `}. If
J = [`], we are done. Otherwise, if J , [`], then there is
a smallest index r ≤ ` that is not in J. Indeed, if there
did not exist such an r, then the smallest index not in J
is strictly greater than `, hence J ⊃ [`], which contradicts
|J| = `. Hence the smallest index not in J, which we de-
note by k, satisfies k > `.

Let J′ := J ∪ {r} \ {k} be the set obtained by replacing k
with r in J; hence |J′| = |J| = ` have the same cardinality.
Now, a common factor of aJ and aJ′ is C := ∏j∈J\{k} aj ×
∏j<J∪{r}(1− aj), so

aJ − aJ′ = C
(
(1− ar)ak − ar(1− ak)

)
= C(ak − ar) ≥ 0,

since ak ≥ ar because k > r. Thus

J � J′.

Now, if J′ = [`], we are done, else, repeating this proce-
dure, we get a finite sequence of subsets, each of cardinal-
ity ` which terminates at J′...′ = [`] after |J \ [`]| replace-
ments (since each iteration replaces exactly one element
of J \ [`] with one element of [`] \ J).

We next define two integer invariants p and m of the or-
dered sequence of marginal probabilities. These invari-
ants are used to formulate the sharp lower bound on aJ

for odd |J| and that for even |J| respectively. Lemma 6 is
used to obtain these bounds. Associate to a1 ≤ · · · ≤ an
an integer p ∈ {0, 1, . . . , b(n− 1)/2c} defined as:

p is the largest integer such that

a2 + a3 ≤ · · · ≤ a2p + a2p+1 ≤ 1. (2.7)

Lemma 7. If |J| is odd, then:

aJ ≥ a[2p+1], (2.8)

where p is defined in (2.7).

Proof. Say |J| = 2q + 1. First use Lemma 6 to get aJ ≥
a[2q+1]. If q = p, we are done. Otherwise, either q < p or
q > p.

Case 1: Suppose q < p. Then, we compare a[2q+1] with
a[2q+3], which have C := a1 · · · a2q+1(1 − a2q+4) · · · (1 −
an) as a common factor, hence

a[2q+1] − a[2q+3] = C
(
(1− a2q+3)(1− a2q+2)− a2q+3a2q+2

)
= C

(
1− a2q+2 − a2q+3

)
≥ 0,

since a2q+2 + a2q+3 ≤ a2p + a2p+1 ≤ 1. Thus a[2q+1] ≥
a[2q+3]. Repeating this process, we get

a[2q+1] ≥ a[2q+3] ≥ · · · ≥ a[2p+1].

Case 2: Suppose q > p. One can similarly show that
a[2q+1] ≥ a[2q−1] using a2q + a2q+1 > 1 because p is the
largest integer such that a2p + a2p+1 ≤ 1. Repeat the pro-
cess to get a[2q+1] ≥ a[2q−1] ≥ · · · ≥ a[2p+1].

Associate also to a1 ≤ · · · ≤ an an integer m ∈
{0, 1, . . . , bn/2c} defined as:

m is the largest integer such that

a1 + a2 ≤ · · · ≤ a2m−1 + a2m ≤ 1. (2.9)

The proof of the next lemma is similar to the previous
lemma and we omit it.

Lemma 8. If |J| is even, then:

aJ ≥ a[2m], (2.10)

where m is defined in (2.9).

This brings us to the following theorem.

Theorem 9. Let p and m be defined as in (2.7) and (2.9) re-
spectively where Assumption 5 holds. Then every probability
measure P on (Ω, Σ) with P(Aj) = aj for all j ∈ [n] and with
respect to which A1, . . . , An are (n− 1)-wise independent has
the form:

P(AJ) = aJ + (−1)|J|s, for all J ⊆ [n],

where s is a scalar parameter satisfying:

−
2m

∏
i=1

ai

n

∏
i=2m+1

(1− ai) ≤ s ≤
2p+1

∏
i=1

ai

n

∏
i=2p+2

(1− ai). (2.11)

Proof. By Corollary 4, the conditions that P(Aj) = aj for
all j ∈ [n] and A1, . . . , An are (n − 1)-wise independent
with respect to P entails that P(AJ) = aJ + (−1)|J|s for
J ⊆ [n] for some s ∈ R. In order for P to be a valid
probability measure, s has to satisfy (2.6). This gives:

s ∈ [− min
J⊆[n]:|J| is even

aJ , min
J⊆[n]:|J| is odd

aJ ]

= [−a[2m], a[2p+1]],

where the equality follows from Lemma 7 and Lemma
8.
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Previous results in the literature are limited to the con-
struction of specific counterexamples showing that (n −
1)-wise independence does not imply the mutual inde-
pendence of n events (see [19, 20]). Theorem 9 compre-
hensively characterizes all such counterexamples. Note
that s = 0 corresponds to mutual independence.

Remark 10. Let us revisit the constructions given in Ex-
ample 1 in view of Theorem 9. The probability measure
where An occurs given that an even number of events in
A1, . . . , An−1 occur is given by

P(AJ) =
1
2n −

(−1)|J|

2n , for all J ⊆ [n].

Since s = −1/2n ∈ [−1/2n, 1/2n], it follows from Theo-
rem 9 that the events are (n− 1)-wise independent. Note
that the events are not mutually independent since s , 0.

The other construction where An occurs given that an
odd number of events in A1, . . . , An−1 occur is the case of
s = 1/2n.

Proposition 11. Either m = p or m = p + 1.

Proof. Let k be the largest integer such that ai + ai+1 ≤ 1
for all i ∈ [k]. If k is odd, then k = 2m− 1 and k− 1 = 2p,
hence m = (k + 1)/2 = p + 1. On the other hand, if k is
even, then k = 2p and k− 1 = 2m− 1, hence m = k/2 =

p.

3. Probability bounds on at least k events occurring

In this section, we derive sharp bounds on the probabil-
ity that at least k out of n events that are (n − 1)-wise
independent occur. Bounds of this type under differing
assumptions on the dependence structure of the random
events have been studied (see [14, 4]). Here we provide
results for (n− 1)-wise independence. From Theorem 9,
we can represent all such probabilities by:

Ps(n, k, a) := ∑
q≥k

∑
J⊆[n]: |J|=q

P(AJ)

=
n

∑
q≥k

∑
J⊆[n]: |J|=q

(
aJ + (−1)|J|s

)
,

where s ∈ [−a[2m], a[2p+1]] . Then P0(n, k, a) is the prob-
ability of occurrence of at least k out of n mutually inde-
pendent events with the given marginal probabilities a.
We show that Ps(n, k, a) is linear in s. Recall the binomial
coefficient given by ( z

m) = z(z− 1) · · · (z−m + 1)/m! for
integers z ≥ 0 and n.

Lemma 12. For any integer k ≥ 0,

Ps(n, k, a) = P0(n, k, a) + (−1)k
(

n− 1
k− 1

)
s, (3.1)

where s ∈ [−a[2m], a[2p+1]].

Proof. We have:

Ps(n, k, a) = P0(n, k, a) + s ∑
q≥k

(−1)q ∑
J⊆[n]: |J|=q

1

= P0(n, k, a) + s ∑
q≥k

(−1)q
(

n
q

)
The result then follows from the combinatorial identity
∑q≥k(−1)q(n

q) = (−1)k(n−1
k−1).

We next derive sharp upper and lower bounds on the
probability that at least k out of n events occur under (n−
1)-wise independence.

Theorem 13. Let p and m be defined as in (2.7) and (2.9)
respectively where Assumption 5 holds. Then every probability
measure P on (Ω, Σ) with P(Aj) = aj for all j ∈ [n] and
with respect to which A1, . . . , An are (n− 1)-wise independent
satisfies:

i) For k odd:

P(n, k, a) ≥ P0(n, k, a)−
(

n− 1
k− 1

) 2p+1

∏
i=1

ai

n

∏
i=2p+2

(1− ai),

(3.2)

P(n, k, a) ≤ P0(n, k, a) +
(

n− 1
k− 1

) 2m

∏
i=1

ai

n

∏
i=2m+1

(1− ai),

(3.3)

ii) For k even:

P(n, k, a) ≥ P0(n, k, a)−
(

n− 1
k− 1

) 2m

∏
i=1

ai

n

∏
i=2m+1

(1− ai),

(3.4)

P(n, k, a) ≤ P0(n, k, a) +
(

n− 1
k− 1

) 2p+1

∏
i=1

ai

n

∏
i=2p+2

(1− ai).

(3.5)

Moreover, all the bounds are sharp. The lower bound for odd
k in (3.2) and the upper bound for even k in (3.5) is uniquely
achieved with P = Pa[2p+1] . The upper bound for odd k is (3.3)
and the lower bound for even k in (3.4) is uniquely achieved
with P = P−a[2m] .

Proof. The result is obtained from Lemma 12 and opti-
mally selecting s in [−a[2m], a[2p+1]] from Theorem 9.

Probability bounds on the occurrence of at least k out of n
events that are `-wise independent (i.e. every ` out of the
n events are mutually independent) have been studied for
particular values of `. The case of ` = 1 represents arbi-
trary dependence among the random events, for which
the sharp upper bound is derived for k = 1 in [2] and for
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general k in [13]. At the other extreme is mutual indepen-
dence (` = n), where the said probability is unique. For
` = 2, the sharp upper bound on the probability of the
union (k = 1) of pairwise independent random events
has been recently derived in [12] and new bounds that
are not necessarily sharp have been proposed for k ≥ 2.
Further, to the best of our knowledge, sharp bounds for
other values of ` ∈ [3, n− 1] have not been identified in
the literature. Our results contribute to this line of work
by finding sharp bounds for l = n− 1. We next demon-
strate, as an immediate implication, the computability of
the sharp bounds in Theorem 13.

Theorem 14. The sharp upper and lower bounds in Theorem
13 are computable in polynomial time.

Proof. The value of P0(n, k, a) is computable in polyno-
mial time using dynamic programming. To see this, let
P0(r, t, a) denote the probability that at least t events oc-
cur out of the first r events where r ≥ t ≥ 0. Then the
probabilities satisfy the recursive formula:

P0(r, t, a) = P0(r− 1, t− 1, a)pr + P0(r− 1, t, a)(1− pr),

where the boundary conditions are P0(r, 0, a) = 1 for
r ≥ 0 and P0(r, t, a) = 0 for t > r (see [7]). The
probability P0(n, k, a) is hence computable in O(n2) time.
Since the additional term in the formulas (3.2)-(3.5) is ef-
ficiently computable using sorting, evaluating binomial
coefficients and multiplication, all the bounds are com-
putable in polynomial time; specifically O(n2) time.

The sharp bounds for k = 1 (union of events) and k = n
(intersection of events) are detailed next.

Corollary 15. Let p and m be defined as in (2.7) and (2.9)
respectively where Assumption 5 holds. Then every probability
measure P on (Ω, Σ) with P(Aj) = aj for all j ∈ [n] and
with respect to which A1, . . . , An are (n− 1)-wise independent
satisfies:

i) For the union of events:

P(
n⋃

j=1

Aj) ≥ 1−
(

2p+1

∏
i=1

(1− ai) +
2p+1

∏
i=1

ai

)
n

∏
i=2p+2

(1− ai),

(3.6)

P(
n⋃

j=1

Aj) ≤ 1−
(

2m

∏
i=1

(1− ai)−
2m

∏
i=1

ai

)
n

∏
i=2m+1

(1− ai),

(3.7)

ii) For the intersection of an even number of events:

P(
n⋂

j=1

Aj) ≥
2m

∏
i=1

ai

(
n

∏
i=2m+1

ai −
n

∏
i=2m+1

(1− ai)

)
, (3.8)

P(
n⋂

j=1

Aj) ≤
2p+1

∏
i=1

ai

(
n

∏
i=2p+2

ai +
n

∏
i=2p+2

(1− ai)

)
, (3.9)

iii) For the intersection of an odd number of events:

P(
n⋂

j=1

Aj) ≥
2p+1

∏
i=1

ai

(
n

∏
i=2p+2

ai −
n

∏
i=2p+2

(1− ai)

)
, (3.10)

P(
n⋂

j=1

Aj) ≤
2m

∏
i=1

ai

(
n

∏
i=2m+1

ai +
n

∏
i=2m+1

(1− ai)

)
. (3.11)

Each of these bounds is sharp and is achieved by a unique
probability measure P(AJ) = aJ + (−1)|J|s, where either
s = −a[2m] or s = a[2p+1].

Proof. With k = 1, we have P0(n, 1, a) = 1−∏n
i=1(1− ai)

and the result immediately follows from (3.2) and (3.3) in
Theorem 13. With k = n, we have P0(n, n, a) = ∏n

i=1 ai
and the result immediately follows from Theorem 13 de-
pending on whether k = n is even or odd.

4. Examples

In this section, we discuss several examples to illustrate
the connection of the newly proposed bounds with exist-
ing bounds and provide numerical evidence of the qual-
ity of the bounds.

Example 16 (Bounds for n = 3 pairwise independent
events). For n = 3 events, (n− 1)-wise independence is
pairwise independence. In this case from (2.9) and (3.7)
where a1 ≤ a2 ≤ a3, we obtain the sharp upper bound on
the union as:

P(
3⋃

j=1

Aj) ≤ min (a1 + a2 + a3 − a3(a1 + a2), 1) (4.1)

Another proof of the sharpness was given in [12]. Kou-
nias [9] showed that every probability measure satisfies
P(
⋃3

j=1 Aj) ≤ min (a1 + a2 + a3 − a31 + a32), 1), where
aij := P(A1 ∩ Aj) for i, j ∈ [3] denotes the bivariate joint
probability. Therefore, (4.1) entails that the upper bound
of Kounias is achieved by some probability measure with
respect to which A1, A2, A3 are pairwise independent.

For the sharp lower bound, from (2.7) and (3.6), we get:

P(
3⋃

j=1

Aj) ≥ max(a2 + a3 − a2a3,

a1 + a2 + a3 − a1a2 − a1a3 − a2a3),

5



Similarly, a corresponding universal lower bound of Kou-
nias in terms of bivariate joint probabilities is therefore
achievable under pairwise independence.

Likewise for the intersection of three pairwise inde-
pendent events, we can verify that the sharp bounds are
given as:

P(
3⋂

j=1

Aj) ≤ min(a1a2, (1− a1)(1− a2)(1− a3) + a1a2a3),

and

P(
3⋂

j=1

Aj) ≥ max (a1(a2 + a3 − 1), 0) .

An alternative proof of the sharpness of the lower bound
is given in [12].

Example 17 (Bonferroni bounds). Suppose the sum of the
two largest marginal probabilities satisfies an−1 + an ≤ 1
and n is even. Then m = n/2 in (2.9), hence from (3.7),
we get the sharp upper bound on the union:

P(
n⋃

j=1

Aj) ≤ 1−
n

∏
i=1

(1− ai) +
n

∏
i=1

ai

=
n−2

∑
k=0

(−1)k ∑
1≤i0<···<ik≤n

ai0 · · · aik .

Bonferroni [3] showed that every probability measure sat-
isfies

P(
n⋃

j=1

Aj) ≤
n−2

∑
k=0

(−1)k ∑
1≤i0<···<ik≤n

ai0···ik , (4.2)

where ai0···ik := P(Ai0 ∩ · · · ∩ Aik ) for i0, . . . , ik ∈ [n] is the
joint probability. Therefore the Bonferroni upper bound
is achieved by some probability measure with respect to
which A1, . . . , An are (n − 1)-wise independent, in this
case.

Similarly if an−1 + an ≤ 1 and n is odd, then p =

(n− 1)/2 in (2.7) and thus the sharp lower bound in (3.6)
becomes:

P(
n⋃

j=1

Aj) ≥ 1−
n

∏
i=1

(1− ai)−
n

∏
i=1

ai

=
n−2

∑
k=0

(−1)k ∑
1≤i0<···<ik≤n

ai0 · · · aik .

Again, a corresponding lower bound of Bonferroni in
terms of joint probabilities of up to n − 1 events is thus
achievable under (n− 1)-wise independence.

The next example shows the connection of the bound
to the probabilistic method which has proved to be very
useful tool in combinatorics (see [1]).

Example 18 (Probabilistic method). Suppose there are n
random “bad” events, each of which occurs with prob-
ability aj for j ∈ [n]. When the events are mutually in-
dependent, the probability of no bad event occurring is
strictly positive when the probability of each bad event
is strictly less than 1 (namely maxj aj < 1). On the
other hand, if the events can be arbitrarily dependent,
from Boole’s union bound [2], the sum of the probabil-
ities must be strictly less than 1 (namely ∑j aj < 1) to
guarantee the same. The Lovász local lemma [5] is a
powerful tool that allows one to relax the assumption of
mutual independence to weak dependence while allow-
ing for the probability of each bad event to be large and
still guaranteeing that no bad event occurs with strictly
positive probability. Specifically consider a graph G on
n nodes where each node i ∈ [n] is associated with an
event Ai and Ai is independent of the collection of events
{Aj : (i, j) < G} for each i ∈ [n]. If G has maximum de-
gree d and maxi ai ≤ 1/4d, then the probability of no bad
event occurring satisfies (see [5, 18]):

P(
n⋂

j=1

Aj) ≥
n

∏
i=1

(1− 2ai) > 0. (4.3)

More generally, in [16] it was shown that for d ≥ 2,
maxi ai < (d − 1)d−1/dd and for d = 1, maxi ai < 1/2
guarantees that there is a strictly positive probability that
no bad event occurs. For the specific case of d = 1, we can
compare our results with the lower bound as shown next
(although the Lovász local lemma holds more generally
for lesser independence with d ≥ 2).

When the events are (n − 1)-wise independent, us-
ing (3.7), the probability that none of the events occur
is strictly positive if an < 1 and a1 + a2 < 1. Indeed,
then (1− a1)(1− a2) > a1a2 and (1− a2k−1)(1− a2k) ≥
a2k−1a2k for all k ∈ {2, . . . , m}. Hence ∏2m

i=1(1 − ai) =

∏m
k=1((1− a2k−1)(1− a2k)) > ∏m

k=1(a2k−1a2k) = ∏2m
i=1 ai

and from (3.7):

P(
n⋂

j=1

Aj) ≥
(

2m

∏
i=1

(1− ai)−
2m

∏
i=1

ai

)
n

∏
i=2m+1

(1− ai) > 0.

When all the marginal probabilities a1 = . . . = an = a, are
identical, the condition a1 + a2 < 1 gives a < 1/2 which
exactly corresponds to the condition identified in [15, 16]
for d = 1. It is easy to verify that the lower bound on the
probability of no bad event occurring in this case is given
by (1− a)n − an for n even and (1− a)n − an−1(1− a) for
n odd which is the sharp lower bound instance wise. In
comparison, the lower bound identified above in (4.3) is
(1− 2a)n. For example with n = 6 and a = 0.1, the sharp
lower bound is 0.53144 while the weaker lower bound
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is 0.262144. In fact for a = 1/2, the first construction
in Example 1 has a zero probability that no bad event
occurs since An must occur when none of the events in
{A1, A2, . . . An−1} occur.

We next provide a numerical example to illustrate the
performance of the bounds in Theorem 13 and compare
it with an existing bound. Specifically tail probability
bounds on the sum of two random variables given their
marginal distribution functions were derived by Makarov
in [10]. We adopt these closed-form bounds also known
as “standard” bounds in our context as follows. Given
that n random events A1, . . . An with respective marginal
probabilities a1 ≤ · · · ≤ an are (n − 1)-wise indepen-
dent, define two random variables as follows: Y1 =

∑n−1
i=1 1Ai , Y2 = 1An where 1A is the indicator function

of event A occurring. Here Y1 ∼ PoissonBinomial(n −
1, a1, a2, . . . an−1) is an integer random variable taking val-
ues in [0, n − 1] while Y2 ∼ Bernoulli(an). Let F1 and
F2 be the resepective distribution functions of Y1 and Y2.
Then the Makarov upper bound for the probability that
the sum of Y1 and Y2 is at least an integer k ∈ [n] is given
from [10, 14] as follows:

P(Y1 + Y2 ≥ k) ≤ min(2− (F1 ∨ F2)
−(k), 1), (4.4)

where (F1 ∨ F2)
−(k) = max

u∈R
(F1(k− u)−+ F2(u)) is the left

continuous version of the supremum convolution F1 ∨ F2.
Since Y2 is a Bernoulli random variable, it is sufficient to
maximize over u ∈ {0, 1} and thus we have :

(F1 ∨ F2)
−(k) =max(F1(k− 1) + an, F1(k− 2) + 1).

The Makarov lower bound can be similarly derived as

P(Y1 + Y2 ≥ k) ≥ max(1−min(F1(k), F1(k− 1) + an), 0).
(4.5)

We next illustrate through a numerical example that the
Makarov bound is not sharp in general under (n − 1)-
wise independence since we lose out on using additional
independence information available in our context. For
example, our bounds assume that any n− 2 events from
the first n − 1 events A1, . . . , An−1 along with the last
event An are mutually independent while the Makarov
bounds do not assume so.

Example 19 (Numerical example). Here we compute the
exact probability for n = 8 with identical marginal prob-
abilities ai = a ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for different values
of k assuming mutual independence. In addition we com-
pute the sharp lower and upper bounds with 7-wise in-
dependence from Theorem 13 (here p = 3 and m = 4 for
all considered values of a). We also provide the Makarov
lower and upper bounds from (4.5) and (4.4) to highlight

that if more information is known on the independence
of the random variables, we can exploit it tightening the
bounds.

Table 1: k = 1 to k = 4 - For each value of a, the first row provides the
Makarov lower bound from (4.5), the second row provides the sharp
lower bound with 7-wise independence, the third row provides the ex-
act value with 8 mutually independent events, the fourth row provides
the sharp upper bound with 7-wise independence and the fifth row pro-
vides the Makarov upper bound from (4.4)

a k = 1 k = 2 k = 3 k = 4
0.1 4.6953e-01 8.6895e-02 5.0243e-03 4.3165e-04
0.1 5.6953e-01 1.8690e-01 3.8090e-02 5.0240e-03
0.1 5.6953e-01 1.8690e-01 3.8092e-02 5.0244e-03
0.1 5.6953e-01 1.8690e-01 3.8092e-02 5.0275e-03
0.1 1.0000e+00 5.6953e-01 1.8690e-01 3.8092e-02
0.2 6.3223e-01 2.9668e-01 5.6282e-02 1.0406e-02
0.2 8.3222e-01 4.9667e-01 2.0287e-01 5.6192e-02
0.2 8.3223e-01 4.9668e-01 2.0308e-01 5.6282e-02
0.2 8.3223e-01 4.9676e-01 2.0314e-01 5.6640e-02
0.2 1.0000e+00 8.3223e-01 4.9668e-01 2.0308e-01
0.3 7.4470e-01 4.4823e-01 1.9410e-01 5.7968e-02
0.3 9.4220e-01 7.4424e-01 4.4501e-01 1.9181e-01
0.3 9.4235e-01 7.4470e-01 4.4823e-01 1.9410e-01
0.3 9.4242e-01 7.4577e-01 4.4960e-01 1.9946e-01
0.3 1.0000e+00 9.4235e-01 7.4470e-01 4.4823e-01
0.4 8.9362e-01 6.8461e-01 4.0591e-01 1.7367e-01
0.4 9.8222e-01 8.8904e-01 6.6396e-01 3.8298e-01
0.4 9.8320e-01 8.9362e-01 6.8461e-01 4.0591e-01
0.4 9.8386e-01 9.0051e-01 6.9837e-01 4.4032e-01
0.4 1.0000e+00 9.8320e-01 8.9362e-01 6.8461e-01
0.5 9.6484e-01 8.5547e-01 6.3672e-01 3.6328e-01
0.5 9.9219e-01 9.3750e-01 7.7344e-01 5.0000e-01
0.5 9.9609e-01 9.6484e-01 8.5547e-01 6.3672e-01
0.5 1.0000e+00 9.9219e-01 9.3750e-01 7.7344e-01
0.5 1.0000e+00 9.9610e-01 9.6484e-01 8.5547e-01

Table 2: k = 5 to k = 8

a k = 5 k = 6 k = 7 k = 8
0.1 2.3410e-05 7.3000e-07 9.9999e-09 0.0000e+00
0.1 4.2850e-04 2.3200e-05 1.0000e-07 0.0000e+00
0.1 4.3165e-04 2.3410e-05 7.3000e-07 1.0000e-08
0.1 4.3200e-04 2.5300e-05 8.0000e-07 1.0000e-07
0.1 5.0244e-03 4.3165e-04 2.3410e-05 7.3000e-07
0.2 1.2314e-03 8.4480e-05 2.5600e-06 0.0000e+00
0.2 1.0048e-02 1.1776e-03 1.2800e-05 0.0000e+00
0.2 1.0406e-02 1.2314e-03 8.4480e-05 2.5600e-06
0.2 1.0496e-02 1.4464e-03 1.0240e-04 1.2800e-05
0.2 5.6282e-02 1.0406e-02 1.2314e-03 8.4480e-05
0.3 1.1292e-02 1.2903e-03 6.5610e-05 0.0000e+00
0.3 5.2610e-02 9.9144e-03 2.1870e-04 0.0000e+00
0.3 5.7968e-02 1.1292e-02 1.2903e-03 6.5610e-05
0.3 6.0264e-02 1.4507e-02 1.7496e-03 2.1870e-04
0.3 1.9410e-01 5.7968e-02 1.1292e-02 1.2903e-03
0.4 4.9807e-02 8.5200e-03 6.5536e-04 0.0000e+00
0.4 1.3926e-01 3.6045e-02 1.6384e-03 0.0000e+00
0.4 1.7367e-01 4.9807e-02 8.5197e-03 6.5536e-04
0.4 1.9661e-01 7.0451e-02 1.3107e-02 1.6384e-03
0.4 4.0591e-01 1.7367e-01 4.9807e-02 8.5197e-03
0.5 1.4453e-01 3.5156e-02 3.9063e-03 0.0000e+00
0.5 2.2656e-01 6.2500e-02 7.8125e-03 0.0000e+00
0.5 3.6328e-01 1.4453e-01 3.5156e-02 3.9063e-03
0.5 5.0000e-01 2.2656e-01 6.2500e-02 7.8125e-03
0.5 6.3672e-01 3.6328e-01 1.4453e-01 3.5156e-02
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As it can be observed, the sharp bounds with (n − 1)-
wise independence clearly improve upon the Makarov
bounds, especially as k increases (for the same a) and a
decreases (for the same k), where the bounds can be a cou-
ple or more magnitude of orders apart. In other words,
the sharp bounds especially provide value in the regime
where the right tail probabilities are more constrained i.e.
large k and small a. Such bounds are useful in providing
robust estimates of the probabilities when the assumption
of mutual independence breaks down.
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